
ibm.com/redbooks

VSAM Demystified

Mary Lovelace
Dawn Dalisay

Alvaro Salla
Valeria Sokal

Understand VSAM architecture

Manage VSAM data

Improve VSAM
performance

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

VSAM Demystified

January 2001

SG24-6105-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (January 2001)

This edition applies to DFSMS/MVS Version 1, Release Number 5, Program Number 5695-DF1 for use
with the OS/390 Operating System.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix C, “Special notices” on page 253.

Take Note!

Contents

Figures .ix

Tables. .xi

Preface . xiii
The team that wrote this redbook. xiii
Comments welcome. xiv

Chapter 1. VSAM basics . 1
1.1 VSAM overview . 1
1.2 What is VSAM? . 1
1.3 VSAM terminology . 2

1.3.1 Logical record. 2
1.3.2 Physical record. 2
1.3.3 Control interval . 3
1.3.4 Control area . 4
1.3.5 Splits . 4
1.3.6 Spanned records . 5
1.3.7 Relative byte address . 5
1.3.8 Component. 6
1.3.9 Cluster . 8
1.3.10 Keys . 9
1.3.11 Sphere . 10
1.3.12 Alternate indexes . 10
1.3.13 Alternate index paths . 11

1.4 Data set types . 11
1.4.1 Entry sequenced data set (ESDS) . 11
1.4.2 Keyed sequenced data set (KSDS). 13
1.4.3 Relative record data set (RRDS) . 14
1.4.4 Variable relative record data set (VRRDS) 16
1.4.5 Linear data set (LDS) . 16

1.5 Extended format data set . 18
1.6 Extended addressability (EA) . 19
1.7 Comparing VSAM data set organizations . 23
1.8 A brief history of VSAM . 24
1.9 Choosing a VSAM data set type . 25
1.10 Accessing VSAM data . 27

1.10.1 IDCAMS . 27
1.10.2 Accessing HFS files through VSAM . 29
1.10.3 DITTO/ESA . 29

1.11 Defining VSAM data sets . 33
© Copyright IBM Corp. 2001 iii

1.11.1 Using IDCAMS . 33
1.11.2 System-managed data sets . 34
1.11.3 Parameters of interest . 34

Chapter 2. Performance . 37
2.1 Service level agreement (SLA) . 37
2.2 Transaction performance . 38
2.3 Performance management . 39

2.3.1 I/O performance . 40
2.4 VSAM performance management . 40
2.5 VSAM rule-of-thumb (ROT) mode. 41

2.5.1 Invalid rules-of-thumb (IROTs) . 41
2.6 Parameters affecting performance . 42

2.6.1 Allocation units . 42
2.6.2 Buffer space . 48
2.6.3 Control interval size . 48
2.6.4 Free space . 50
2.6.5 Index options . 52
2.6.6 Share options . 53
2.6.7 Initial load option . 54
2.6.8 Region size . 55
2.6.9 Buffering options . 58
2.6.10 Data compression. 84
2.6.11 Data striping . 92

2.7 VSAM performance management . 103
2.7.1 Performance scenario using RMF reports 103
2.7.2 Reduce the number of I/Os. 107
2.7.3 I/O wait time (IOSQ) for VSAM files . 111
2.7.4 I/O wait time (PEND) for VSAM files . 112
2.7.5 I/O service time (disconnect) for VSAM files 112
2.7.6 I/O service time (connect) for VSAM files 117
2.7.7 How to decrease VSAM CPU time . 119

2.8 VSAM and SmartBatch. 121
2.8.1 SmartBatch highlights. 121
2.8.2 SmartBatch components and VSAM . 122

Chapter 3. Recovery of VSAM data sets . 127
3.1 Basic recommendations . 127
3.2 VSAM recovery information sources. 128
3.3 How to back up VSAM data sets . 128

3.3.1 IDCAMS EXPORT and IMPORT. 128
3.3.2 Backup-while-open concepts . 130

3.4 Space Constraint Relief parameter (fewer X‘037’ abends) 131
iv VSAM Demystified

3.5 IDCAMS recovery commands. 133
3.5.1 EXAMINE command . 134
3.5.2 DIAGNOSE command . 134
3.5.3 VERIFY command . 135

3.6 Useful documents. 137
3.7 Broken data sets . 139

3.7.1 Lack of virtual storage . 139
3.7.2 Initial loading problems. 140
3.7.3 Mismatch between catalog and data set 142
3.7.4 Hardware errors . 144
3.7.5 Bad data or bad channel program. 145
3.7.6 Structural damage . 147
3.7.7 Improper sharing . 150
3.7.8 Mismatch between catalog and VTOC 152
3.7.9 VSAM does not produce expected output 153
3.7.10 Recovery scenarios . 154
3.7.11 Recovering ICF catalogs . 158
3.7.12 Recovering damaged VVDS entries . 158

3.8 IDC3009I message. 159
3.9 IDCAMS LISTCAT output fields . 166

3.9.1 High used RBA value (HURBA) for KSDS. 171
3.9.2 High allocated RBA value (HARBA) . 172
3.9.3 FREESPC . 173
3.9.4 High key RBA/CI. 173
3.9.5 High-level index RBA value . 173
3.9.6 Sequence set first RBA value . 173
3.9.7 Number of index levels . 173
3.9.8 Time stamps. 173

3.10 DFSMSdss PRINT command . 174
3.11 SMF record types related to VSAM data sets 174

3.11.1 SMF record type 60 . 174
3.11.2 SMF record type 61 . 175
3.11.3 SMF record type 62 . 175
3.11.4 SMF record type 63 . 175
3.11.5 SMF record type 64 . 176

3.12 Resource Recovery Management Services (RRMS) and VSAM . . . 179

Chapter 4. Managing your VSAM data sets . 181
4.1 Reorganization considerations . 181

4.1.1 CI/CA splits . 181
4.1.2 The loss of useful space in data CA . 181
4.1.3 CI/CA splits causing free space increase 183

4.2 Sharing VSAM data sets . 183
v

4.2.1 Write and read integrity . 184
4.2.2 Who is sharing the data set? . 185
4.2.3 Intra-address space sharing . 185
4.2.4 Cross-region options . 188
4.2.5 Cross-system options . 189
4.2.6 General share options — considerations 191
4.2.7 Control Block Update Facility (CBUF) . 192

4.3 Catalog Search Interface . 193
4.3.1 CSI setup . 193

4.4 VSAM exploiters. 195
4.4.1 DB2 . 195
4.4.2 Hierarchical File System (HFS). 195
4.4.3 CICS . 195
4.4.4 DFSMShsm . 195
4.4.5 DFSMSrmm . 197
4.4.6 OS/390 data sets . 197
4.4.7 Java/VSAM. 197

4.5 Media Manager, Open, Close, EOV in VSAM 200
4.5.1 OPEN macro . 201
4.5.2 CLOSE macro . 201
4.5.3 End-of-Volume (EOV) macro . 202

4.6 Transactional VSAM. 202

Appendix A. Sample code. 209
A.1 JRIO API examples. 209

A.1.1 Locate a record by key in keyed access record file 209
A.1.2 Position to a record in a random access record file 209
A.1.3 Read a record from a keyed access record file 210
A.1.4 Read a record from a random access record file 211
A.1.5 Update a record in a keyed access record file 212

A.2 Accessing the VSAM Shared Information (VSI) 213
A.3 Sample program to extract information from SMF record type 64 214

Appendix B. Miscellaneous performance items 223
B.1 Our laboratory . 223

B.1.1 General lab description . 223
B.1.2 What do we measure? . 224
B.1.3 DASD cache concepts . 226
B.1.4 Cache Modes . 229
B.1.5 Using cache modes in a non-SMS data set 235
B.1.6 Using cache in an SMS data set. 236

B.2 Cache analogy . 241
B.3 Share options analogy . 244
vi VSAM Demystified

B.4 Symptoms (messages) from a broken data set 245
B.5 IDCAMS Examine messages . 251

Appendix C. Special notices . 253

Appendix D. Related publications . 257
D.1 IBM Redbooks . 257
4.7 IBM Redbooks collections . 257
D.2 Other resources . 257
D.3 Referenced Web sites . 258

How to get IBM Redbooks . 259
IBM Redbooks fax order form . 260

Index . 261

IBM Redbooks review . 265
vii

viii VSAM Demystified

Figures

1. General format of a control interval . 4
2. Sequence set . 7
3. Index set . 8
4. KSDS structure showing cluster components . 9
5. Entry sequenced data set (ESDS) . 12
6. Relative record data set (RRDS) . 15
7. Linear data set (LDS). 17
8. DATA CLASS DEFINE ISMF panel . 20
9. AMS commands. 28
10. DITTO selection panel . 30
11. DITTO edit function . 31
12. VSAM edit panel . 32
13. DEFINE command required parameters . 34
14. Response time components . 38
15. Address space layout. 56
16. NSR buffering . 64
17. VSAM shared resources (LSR/GSR). 72
18. CMS dictionary selection . 87
19. Striped VSAM data set. 94
20. Layering in VSAM data set striping . 95
21. Hiperbatch example . 109
22. HARBA, HURBA, and free space . 182
23. Java class model example. 198
24. Transactional VSAM environment . 203
25. Modes of access to VSAM data sets . 204
26. System logger overview. 207
27. Types of writes. 233
28. Association between MSR and cache usage attributes. 237
29. The tale . 242
30. Sharing VSAM data sets . 244
© Copyright IBM Corp. 2001 ix

x VSAM Demystified

Tables

1. Comparison of ESDS, KSDS, RRDS, VRRDS, and linear data sets. 23
2. Region JCL parameter. 57
3. Parameters affecting buffer allocation . 60
4. NSR — read sequential varying the number of buffers — STRNO=1 66
5. NSR - Initial Load mode varying the number of buffers 68
6. NSR buffering with direct access — STRNO=1. 70
7. Direct access: benefits of using SMB — updates and insertions. 79
8. Some effects of ACB’s MACRF and storage class BIAS parameters 80
9. Initial load mode comparing SMB with no-SMB buffering 80
10. Comparing compression . 90
11. Random processing: extended format vs. non-extended format data sets118
12. NSR — read sequential varying the number of buffers 120
13. Direct access: benefits of using SMB — updates and insertions. 120
14. Direct access: benefits of using SMB — updates and insertions. 121
15. IDC3009I message . 160
16. Relationship between share options and VSAM functions 191
© Copyright IBM Corp. 2001 xi

xii VSAM Demystified

Preface

Virtual Storage Access Method (VSAM) is one of the access methods used to
process data. We all have used VSAM and may work with VSAM data sets
daily, but exactly how it works and why we use it instead of another access
method may seem to be a mystery.

This IBM Redbook will give you the information required to understand,
evaluate, and use VSAM properly. It will clarify VSAM functions for
application programmers who will be working with VSAM. The practical,
straightforward approach should dispel much of the complexity sometimes
associated with VSAM. Wherever possible an example is used to reinforce a
description of a VSAM function.

This redbook is intended as a supplement to existing product manuals. It is
intended to be used as an initial point of reference for VSAM functions. For
example, parameters used in data set allocation to improve performance are
described, and code examples provided, but the actual manual, DFSMS/MVS
Access Method Services for the Integrated Catalog Facility, SC26-4906, must
be consulted for complete syntax rules.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization San Jose Center.

Mary Lovelace is a Consulting I/T Specialist at the International Technical
Support Organization, San Jose Center. She has more than 20 years of
experience with IBM in large systems and storage product education, system
engineering and consultancy, marketing support, and systems programming.

Dawn Dalisay is an IT Specialist in IBM Philippines. She has 4 years
experience with IBM in S/390 technical support. Her areas of expertise
include VSAM, CICS, and VSE. She teaches a VSAM Fundamentals course
for IBM Learning Services.

Alvaro Salla is an IBM retiree. He worked in IBM for more than 30 years,
always in large systems. Alvaro wrote many redbooks and spent many years
teaching, from S/360 to S/390. He has a Chemistry Engineer degree from the
University of Sao Paulo, Brasil.
© Copyright IBM Corp. 2001 xiii

Valeria Sokal is a Business Partner from Brasil. She has 12 years experience
as an OS/390 system programmer. Her previous residencies include OS/390
Workload Manager Exploitation and Implementation and ABC’s for OS/390
System Programmers.

Thanks to the following people for their invaluable contributions to this project:

Ed Daray
Storage Systems Group - San Jose

Savur Rao
Storage Systems Group - San Jose

Charlie Burger
Storage Systems Advanced Technical Systems Center - San Jose

Helen Witter
Storage Systems Group - San Jose

Toby Marek
Tivoli Systems - San Jose

Bob Haimowitz
International Technical Support Organization- Raleigh

Paul Rogers
International Technical Support Organization - Poughkeepsie

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 265 to
the fax number shown on the form.

• Use the online evaluation form found at ibm.com/redbooks

• Send your comments in an Internet note to redbook@us.ibm.com
xiv VSAM Demystified

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. VSAM basics

In this chapter we will build the foundation for the rest of the book. The
concepts and terminology associated with VSAM data sets are reviewed.
We explain how a VSAM data set is different from other data set types.
The various types of VSAM data sets, and what makes them unique, are
discussed, along with an explanation of how data is stored and accessed in a
VSAM data set.

1.1 VSAM overview

In the early 1970s, IBM introduced a collection of three data set organizations
— sequential, indexed, and direct-access, together with the access methods
and utilities to be used on the mainframe operating systems.

This collection of data set organizations is called the Virtual Storage Access
Method (VSAM). The word virtual relates to the fact that VSAM was
introduced at approximately the same time as the initial IBM virtual storage
operating systems OS/VS1 and OS/VS2.

VSAM was developed to replace the Indexed Sequential Access Method
(ISAM), which is a much older technology. ISAM has major processing
overheads which IBM wanted to improve.

1.2 What is VSAM?

VSAM is one of several access methods that defines the technique by which
data is stored and retrieved. It is a GET/PUT interface used to transfer data
from a direct access storage device (DASD) to an application program. VSAM
does not support data stored on tape.

VSAM is used to organize and access data, and maintain information about
this data which is stored or referenced in a catalog. VSAM data sets must be
cataloged in an integrated catalog facility (ICF) structure.

Records are arranged by an index key or by relative byte addressing. VSAM
uses direct or sequential processing of fixed and variable length records on
DASD.

There are two major parts to VSAM: catalog management and record
management.
© Copyright IBM Corp. 2001 1

• Catalog Management

The catalog, which contains information about the data sets, can be an
ICF or a VSAM catalog. DFSMS/MVS deals only with ICF catalogs. All
VSAM data sets must be defined in an ICF catalog.

In this book, we will not go into detail on catalog management. For more
information, refer to the IBM Redbooks Enhanced Catalog Sharing and
Management, SG24-5594, and Integrated Catalog Facility Backup and
Recovery, SG24-5644.

• Record management

The purpose of record management is to maintain records in a VSAM data
set for an application or a system program. Today, VSAM supports five
data set organizations:

- Key-sequenced data set (KSDS)
- Entry-sequenced data set (ESDS)
- Fixed-length relative record data set (RRDS)
- Variable-length relative record data set (VRRDS)
- Linear data set (LDS)

The primary difference between the VSAM data set organizations is the
way in which their records are stored and accessed.

1.3 VSAM terminology

Before we discuss VSAM data set organizations in detail, we need to review
some terms that will be used throughout the book.

1.3.1 Logical record
Logical records in VSAM data sets are stored differently than logical records
in non-VSAM data sets. A logical record is a unit of information used to store
data in a VSAM data set. The terms logical record and record are used
interchangeably in this book.

1.3.2 Physical record
A physical record is device dependent and calculated by catalog at the time
the data set is defined. VSAM uses a control interval as its smallest unit of
information to transfer.
2 VSAM Demystified

1.3.3 Control interval
Logical records are contained in a control interval (CI). The fundamental
building block of every component of a VSAM data set is the control interval.
A control interval is the unit of information that VSAM transfers between the
storage device and the processor. One CI can be made of one or more
physical blocks of DASD.

A CI consists of the following:

• Logical records stored from beginning to end

• Unused space, referred to as free space, for data records to be inserted
into or lengthened

• Control information, which is made up of two types of fields; one control
interval definition field (CIDF) per CI, and one or more record definition
fields (RDF) per logical record.

- CIDF is a 4-byte field.

It contains information about the length of data in the CI and the
amount and location of free space.

- RDF is a 3-byte field.

It describes the length of records and how many adjacent records are
of the same length.

For more information on the structure of the control information fields,
refer to DFSMS/MVS Using Data Sets, SC26-4922.

Figure 1 shows the general format of a CI. The CI components and properties
may vary depending on the data set organization. For example, an LDS does
not contain CIDFs and RDFs in its CI. All of the bytes in the LDS CI are data
bytes. Refer to 1.4, “Data set types” on page 11 for more details.
Chapter 1. VSAM basics 3

Figure 1. General format of a control interval

The size of CIs can vary from one data set to another, but all the CIs within
the data component of a particular data set must be of the same length. Refer
to 1.3.8, “Component” on page 6 for details on the data component.

You can request the CI size using the AMS DEFINE command, you can let
VSAM determine the CI size, or you can specify a data class, thereby using
the CISIZE defined by your storage administrator.

1.3.4 Control area
A control area (CA) is two or more CIs put together into fixed-length
contiguous areas of DASD. A VSAM data set is composed of one or more
CAs. The number of CIs in a CA is fixed by VSAM.

The maximum size of a CA is one cylinder and the minimum size is one track.
The CA size is implicitly defined when you specify the size of a data set at
data set definition.

1.3.5 Splits
CI and CA splits occur as a result of data record insertions. If a record is to be
inserted and there is not enough free space in the CI, the CI will be split.
Approximately half of the records in the CI are transferred to a free CI and the
record to be inserted is placed in the original CI.

If there are no free CIs and a record is to be inserted, a CA split occurs.

The physical sequence of records and CIs is no longer the same as the
logical sequence after a split. A new index entry is inserted in the sequence
set for the new CI, and the existing index entry is updated.

Control Interval Format

LRn

Control information fields

LR = Logical record
RDF = Record definition field
CIDF = Control interval definition field

LR1 LR2 LRn
R
D
Fn

R
D
F2

R
D
F2

C
I
D
F

UNUSED SPACE
4 VSAM Demystified

1.3.6 Spanned records
Spanned records are records that are larger than the CI size. In order to have
spanned records the file must be defined with the SPANNED attribute at the
time it is created. Spanned records are allowed to extend across or span
control interval boundries. The RDF’s will describe whether the record is
spanned or not.

A spanned record must always begin on a control interval boundry and fills
one or more control intervals within a single control area. A spanned record
cannot share the CI with any other records. In other words, the free space at
the end of the last segment will not be filled with the next record. This free
space can only be used to extend the spanned record.

If spanned records are used for KSDS, the primary key must be within the
first control interval.

1.3.7 Relative byte address
The relative byte address (RBA) is used to determine the position of a record
in a VSAM data set. It is the physical location of a logical record contained in
a data set. The RBA is the offset of a logical record from the beginning of the
data set.

The first record in the VSAM data set has an RBA of zero; the second record
has an RBA equal to the length of the first record, and so on. The RBA of a
logical record depends only on the record's position in the sequence of
records. The RBA is always expressed as a fullword binary integer.

The RBA of a record includes the free space and control information in the CI.

RBAs might change when a control interval split occurs or when records are
added, deleted, or changed in size. With compressed data sets, the RBAs for
compressed records are not predictable. Therefore, access by address is not
suggested for normal use.
Chapter 1. VSAM basics 5

1.3.8 Component
A component is a name given to the individual parts of a VSAM data set.
KSDS and VRRDS have data and index components. ESDS, RRDS and LDS
only have data components.

1.3.8.1 Data component
The data component is the part of a VSAM data set, alternate index, or
catalog that contains the data records.

1.3.8.2 Index component
The index component is a collection of logically sequenced keys. The key is a
value taken from a fixed defined field in each logical record. The key
determines the record’s position in the data set.

Using the index, VSAM is able to randomly retrieve a record from the data
component when a request is made for a record with a certain key. VSAM
divides the index CI into sections in order to speed up the search of a key.

A VSAM index can consist of more than one level. Each level contains
pointers to the next lower level.

The index component consists of two parts: sequence set and index set.

• Sequence set

The sequence set is the lowest level of index CIs and directly points to the
data CI in the CA. There is one CI in the sequence set for each data CA.

It contains pointers and high key information for each data CI. It also
contains horizontal pointers from one sequence set CI to the next higher
keyed sequence set CI (see Figure 2).
6 VSAM Demystified

Figure 2. Sequence set

• Index set

The index set is the remainder of the index component. If there is more
than one sequence set CI, VSAM automatically builds another index level.
Each CI in the index set contains pointers and high key information for CIs
in the next lower level of the index. See Figure 3.

The highest level of the index always contains a single index CI.

© Copyright IBM Corp., 1999

Sequence Set

Forward horizontal pointer at same level
Vertical pointers to data control intervals

one pointer for each control interval in control area
determines minimum CI size for index

Control Interval Control Interval

Control Interval

Control Interval Control Interval Control Interval Control Interval

Sequence Set

Index Set
Chapter 1. VSAM basics 7

Figure 3. Index set

1.3.9 Cluster
All the VSAM data set types are defined as clusters. For a KSDS, a cluster is
the combination of a data component and an index component. The cluster
provides a way to treat index and data components as a single component
with its own name. You can also give each component a name, and process
the data portion separately from the index portion.

RRDS, ESDS, and LDS formats are considered to be clusters without index
components. To be consistent, they are given cluster names that are normally
used when processing the data set.

Index Set

Forward horizontal pointer at same level
Vertical pointers to next lower level index
records
Optionally replicated on DASD track

Control Interval Control IntervalControl Interval Control Interval

Sequence Set

Index Set

Control Interval Control Interval

Control Interval
8 VSAM Demystified

Figure 4 shows the components of a KSDS.

Figure 4. KSDS structure showing cluster components

1.3.10 Keys
To differentiate between keys used in VSAM Objects, the key used in a base
cluster is called a primary key or base key. The key used in an alternate index
is called an alternate key.

In VSAM key sequenced organization, a record must have a unique,
imbedded fixed-length primary key located in the same position within each
logical record. Primary keys can be a minimum of one byte and a maximum of
255 bytes.

Unlike the primary keys, which must be unique, identical alternate keys may
occue in more than one logical record. This allows the search with a given
alternate key to read all base cluster records containing this alternate key.

KSDS Structure

Data Component

Index Component

Control Interval Control Interval Control Interval Control Interval

Control Interval Control Interval

Sequence Set
Index Set

Control Interval

Control Interval

Control Interval

C
O
N
T
R
O
L

A
R
E
A

Control Interval

Control Interval

Cluster
Chapter 1. VSAM basics 9

1.3.11 Sphere
A sphere is a VSAM cluster and its associated data sets. These data sets are
the alternate indexes (AIXs) of the cluster. An AIX is a KSDS containing index
entries organized by the alternate keys of its associated base data records. It
provides another way of locating records in the data component of a cluster.

An AIX can only be defined over a key-sequenced or entry-sequenced
cluster.

1.3.12 Alternate indexes
AIXs enable the logical records of an ESDS or of a KSDS (in this context
called a base cluster) to be accessed sequentially and directly by more than
one key field. This eliminates the need to store the same data in different
sequences in multiple data sets for the purposes of various applications.

Any field in the base cluster record can be used as an alternate key. It may
also overlap the primary key (in a KSDS), or with any other alternate key. The
alternate key field must be a contiguous field with the same offset in each
record. In a spanned record, this field must be located totally in the first
control interval.

Each alternate index consists of an index component and a data component.
These two components together form an alternate index for the base cluster.
It is a KSDS built by VSAM. An alternate index will contain the different
alternate key values of a certain alternate key. For every alternate key field, a
different alternate index is needed. The records in the data component
contain an alternate key and one or more pointers to data in the base cluster.
For an entry-sequenced base cluster, the pointers are RBA values. For a
key-sequenced base cluster, the pointers are prime key values.

There may be more than one primary key or RBA per alternate key. The
primary keys or RBAs will be in ascending sequence within an alternate index
record after loading. This fact will not necessarily be true after the base
cluster has been updated (especially the alternate key fields) or new records
added, as any new primary key or RBA will be inserted at the end of the
appropriate alternate index record.

The AMS program allows you to define, and then to create AIXs when the
BLDINDEX command is specified. An AIX is defined only after its associated
base cluster has been defined, and it can be built only after its base has been
loaded with at least one record.
10 VSAM Demystified

The BLDINDEX command causes a sequential scan of the specified base
cluster, during which alternate key values and primary keys (for a KSDS) or
record RBAs (for an ESDS) are extracted and put together to form alternate
index records. These records are sorted by ascending alternate keys. The
alternate index records are then constructed and written.

1.3.13 Alternate index paths
Before accessing a KSDS or ESDS through an alternate index, a path must
be defined. A path is the means by which a base cluster is accessed by way
of its alternate indices. A path is defined and named using the AMS DEFINE
PATH command. At least one path must be defined for each of the alternate
indices through which the base cluster is to be accessed. The path name
refers to the base cluster and alternate index pair. When a program opens a
path for processing, both the base cluster and the alternate index are
opened.

1.4 Data set types

We have mentioned that VSAM supports five data set organizations:
entry-sequenced, key-sequenced, fixed-length and variable-length relative
record, and linear. In this section we will discuss each of these in detail.

1.4.1 Entry sequenced data set (ESDS)
An ESDS is comparable to a sequential non-VSAM data set in the sense that
records are sequenced by the order of their entry in the data set, rather than
by key field in the logical record. This could be fixed or variable length
records.

All new records are placed at the end of the data set. Existing records can
never be deleted. If the application wants to delete a record, it must flag that
record as inactive. As far as VSAM is concerned, the record is not deleted. It
is the responsibility of the application program to identify that record as
invalid.

Records can be updated, but without length change. To change the length of
a record, you must either store it at the end of the data set as a new record,
or override an existing record of the same length that you have flagged as
inactive.
Chapter 1. VSAM basics 11

A record can be accessed sequentially or directly by its RBA:

• Sequential processing — VSAM automatically retrieves records in stored
sequence. Sequential processing can be started from the beginning or
somewhere in the middle of a data set. If processing is to begin in the
middle of a data set, positioning is necessary before sequential
processing can be performed.

• Direct processing — When a record is loaded or added, VSAM indicates
its RBA. To retrieve records directly, you must supply the RBA for the
record as a search argument. Although an ESDS does not contain an
index component, you can build an alternate index to keep track of these
RBAs.

Skip sequential processing is not allowed for an ESDS. Refer to 1.4.2, “Keyed
sequenced data set (KSDS)” on page 13 for more information on skip
sequential processing.

Figure 5 shows the format of an ESDS.

Figure 5. Entry sequenced data set (ESDS)

RECORD
1

R
D
F

C
I
D
F

CI 1

RBA 0

R
D
F

RECORD
2

RECORD
3

RECORD
4

UNUSED SPACE

C
I
D
F

CI 4

RBA 12288

UNUSED SPACE

RECORD
9

R
D
F

C
I
D
F

CI 3

RBA 8192

R
D
F

RECORD
10

UNUSED SPACE

RECORD
5

R
D
F

C
I
D
F

CI 2

RBA 4096

R
D
F

RECORD
6

RECORD
7

RECORD
8

UNUSED
SPACE

R
D
F

R
D
F

ENTRY SEQUENCED DATA SET (ESDS)
12 VSAM Demystified

Empty spaces in the CI are referred to as unused space because they can
never be used. This is a result of CI internal fragmentation (spanned is only
for logical records greater than the CI).

You specify ESDS organization using the IDCAMS DEFINE command and
specifying the NONINDEXED parameter.

1.4.2 Keyed sequenced data set (KSDS)
In a KSDS, records are placed in the data set in ascending collating
sequence by key. The key contains a unique value that determines the
record's collating position in the data set. The key must be in the same
position in each record.

The key data must be contiguous and each record's key must be unique.
After it is specified, the value of the key cannot be altered, but the entire
record can be deleted.

When a new record is added to the data set, it is inserted in its collating
sequence by key. This could be fixed or variable length records.

Refer to Figure 4 on page 9 for the structure of a KSDS.

There are three methods by which to access a KSDS. These are sequential,
direct, or skip-sequential.

• Sequential access is used to load a KSDS, and to retrieve, update, add
and delete records in an existing data set.

VSAM uses the index to access data records in ascending or descending
sequence by key. When retrieving records, you do not need to specify key
values because VSAM automatically obtains the next logical record in
sequence. The sequence set is used to find the next logical CI.

Sequential access allows you to avoid searching the index more than
once. Sequential is faster than direct for accessing multiple data records
in ascending key order.

• Direct access is used to retrieve, update, add and delete records in an
existing data set.

You need to supply a key value for each record to be processed. You can
supply the full key or a generic key. The generic key is the high order
portion of a full key. For example, you might want to retrieve all records
whose keys begin with XY (where XY is the generic key), regardless of the
full key value.
Chapter 1. VSAM basics 13

VSAM searches the index from the highest level index set CI to the
sequence set for a record to be accessed. Vertical pointers in the
sequence set CI are used to access the data CA containing the record.

Direct access saves you a lot of overhead by not retrieving the entire data
set sequentially to process a small percentage of the total number of
records.

• Skip-sequential access is used to retrieve, update, add and delete records
in an existing data set.

VSAM retrieves selected records, but in ascending sequence of key
values. Skip sequential processing allows you to

- Avoid retrieving the entire data set sequentially in order to process a
relatively small percentage of the total number of records

- Avoid retrieving the desired records directly, which causes the index to
be searched from top to bottom level for each record

For each request the sequence set is used to find the next logical CI and to
check if it contains the requested record. If the first skip-sequential search is
the first access after opening the data set, a direct search is initiated by
VSAM to find the first record. From then on the index sequence set level will
be used to find the subsequent records. If other operations were performed
before (for example, read sequential), either the last position of that operation
will be used as a starting point to search the sequence set records, or a
re-positioning is necessary.

You specify the KSDS organization using the IDCAMS DEFINE command
with the INDEXED parameter.

1.4.3 Relative record data set (RRDS)
An RRDS consists of a number of pre-formatted fixed-length slots. Each slot
has a unique relative record number, and the slots are sequenced by
ascending relative record number.

Each fixed length logical record occupies a slot, and is stored and retrieved
by the relative record number of that slot. The position of a data record is
fixed and its relative record number cannot change.

Because the slot can either contain data or be empty, a data record can be
inserted or deleted without affecting the position of other data records in the
RRDS. The RDF shows whether the slot is occupied or empty. Free space is
not provided because the entire data set is divided into fixed-length slots.
14 VSAM Demystified

Figure 6 shows the format of an RRDS.

Figure 6. Relative record data set (RRDS)

1.4.3.1 Typical RRDS processing
The application program inputs the relative record number of the target
record and VSAM is able to find its location quickly using a formula that takes
into consideration the geometry of the DASD device. The relative record
number is always used as a search argument.

An RRDS can be processed sequentially, directly or skip-sequentially.

• RRDS sequential porcessing is trated the same way as ESDS sequential
processing. Empty slots are automatically skipped by VSAM.

• An RRDS can be processed directly by supplying the relative record
number as a key. VSAM calculates the RBA and accesses the appropriate
record or slot. RRDS direct address processing by supplying the RBA is
not supported.

• Skip-sequential processing is treated like an RRDS direct processing
request, but the position is maintained. Records must be in ascending
sequence.

RELATIVE RECORD DATA SET (RRDS)

CI 0

CI 3

CI 2

CI 1

SLOT 21
R
D
F

C
I
D
F

R
D
F

SLOT 22 SLOT 23 SLOT 24 SLOT 25

SLOT 31
R
D
F

C
I
D
F

R
D
F

SLOT 32 SLOT 33 SLOT 34 SLOT 35

SLOT 26
R
D
F

C
I
D
F

R
D
F

SLOT 36
R
D
F

C
I
D
F

R
D
F

SLOT 37 SLOT 38 SLOT 39 SLOT 40

C
O
N
T
R
O
L

A
R
E
A

SLOT 27 SLOT 28 SLOT 29 SLOT 30

CI 0

CI 3

CI 2

CI 1

SLOT 1
R
D
F

C
I
D
F

R
D
F

SLOT 2 SLOT 3 SLOT 4 SLOT 5

SLOT 11
R
D
F

C
I
D
F

R
D
F

SLOT 12 SLOT 13 SLOT 14 SLOT 15

SLOT 6
R
D
F

C
I
D
F

R
D
F

SLOT 16
R
D
F

C
I
D
F

R
D
F

SLOT 17 SLOT 18 SLOT 19 SLOT 20

C
O
N
T
R
O
L

A
R
E
A

SLOT 7 SLOT 8 SLOT 9 SLOT 10
Chapter 1. VSAM basics 15

You specify the RRDS organization using the IDCAMS DEFINE command
with the NUMBERED option.

1.4.4 Variable relative record data set (VRRDS)
A VRRDS is similar to a fixed-length RRDS, except that it contains
variable-length records. Each record has a unique relative record number,
and is placed in ascending relative record number order. Each record is
stored and retrieved using its relative record number. VRRDS has no slots.

The relative record number of a record cannot change. When that record is
erased, the relative record number can be reused for a new record.

You can specify free space for inserting records and increasing the length of
a record.

VRRDS is a KSDS processed as an RRDS, so an index will be created.

You specify the VRRDS organization with the IDCAMS DEFINE command
with the NUMBERED option and variable length record.

1.4.5 Linear data set (LDS)
A linear data set (LDS) contains data that can be accessed as
byte-addressable strings in virtual storage. It is a VSAM data set with a
control interval size of 4096 bytes. An LDS has no imbedded control
information in its CI, that is, no RDFs and CIDFs. All LDS bytes are data
bytes. Logical records must be blocked and deblocked by the application
program, but records do not exist from the point of view of VSAM.

Like the ESDS and RRDS, an LDS contains a data component only.

An LDS can only be defined using ICF catalogs. IDCAMS is used to define an
LDS but it is accessed using a Data-In-Virtual (DIV) macro. An LDS is
sometimes referred to as a DIV object.
16 VSAM Demystified

Figure 7 shows the format of an LDS.

Figure 7. Linear data set (LDS)

You specify the LDS organization with the IDCAMS DEFINE command
specifying the LINEAR parameter.

1.4.5.1 Data-in-Virtual
Data-in-Virtual (DIV) is an optional and unique buffering technique used for
LDS data sets. Application programs can use DIV to “map” an LDS data set
or a portion of a data set into an address space, a data space, or a
hiperspace.

Data is read into central storage through the paging algorithms only when
that data block is actually referenced. During RSM page steal processing,
only changed pages are written to auxiliary storage. Unchanged pages are
discarded since they can be retrieved again from the permanent data set.

DIV is designed to improve the performance of applications that process
large files non-sequentially in an unpredictible pattern. It reduces the number
of I/O operations that are traditionally associated with data retrieval. Likely
candidates are large arrays or table files.

CI

CI

CI

CI

C
O
N
T
R
O
L

A
R
E
A

DATA

DATA

DATA

DATA

CI

CI

CI

CI

C
O
N
T
R
O
L

A
R
E
A

DATA

DATA

DATA

DATA

LINEAR DATA SET (LDS)
Chapter 1. VSAM basics 17

1.4.5.2 Mapping a linear data set
To establish a map from a linear data set to a window (a program provided
area in multiples of 4K on a 4K boundary), the program issues:

• DIV IDENTIFY to introduce (allocate) a linear data set to DIV services

• DIV ACCESS to cause a VSAM open for the data set and indicate access
mode (read or update)

• DIV MAP to enable the viewing of the data object by establishing an
association between a program provided area and the data object. The
area may be in an address space, data space, or hiperspace.

No actual I/O is done until the program references the data in the window.
The reference will result in a page fault which causes DIV services to read the
data from the linear data set into the window.

• DIV SAVE can be used to write out changes to the data object.

• DIV RESET can be used to discard changes made in the window since the
last SAVE operation.

1.5 Extended format data set

An extended format data set can be thought of as having the same
characteristics as a physical sequential data set. Extended format is a
technique that affects the way count key data is stored in a 3390/3380 logical
track. It increases the performance and the reliability of an I/O operation. It is
recommended that you convert your data sets to extended format to get
better performance, reliability and functionality. A good time is when you next
reorganize a VSAM data set.

An extended format data set for VSAM can be allocated for KSDSs, ESDSs,
RRDSs, VRRDSs, and LDSs. The benefits available for extended format data
sets include:

• Data striping
• Data compression
• VSAM extended addressability
• Partial space release
• System-managed buffering

Extended format data sets must be system-managed. They are described in
the catalog as striped data sets with a stripe count of one. When a data set is
allocated as an extended format data set, the data and index are extended
format. Any alternate indexes related to an extended format cluster are also
extended format.
18 VSAM Demystified

When in extended format, there is no support for the key-range VSAM option,
MVS checkpoint restart, or hiperbatch. Key-range is not recommended in an
SMS environment with the new RAID controllers.

Certain types of key-sequenced data set types cannot be allocated as
extended format, including:

• Catalogs
• System data sets
• Temporary data sets

If a data set is allocated as an extended format data set, 32 bytes (x'20') are
added to each physical block. When the control interval size is calculated or
explicitly specified, this physical blockoverhead may increase the amount of
space actually needed for the data set. The 32-byte suffix of each data record
contains:

• A relative record number

• A 3-byte field to detect controller invalid padding, improving the availability
of the I/O operation

The data records in an extended format data set are the same length (a sort
of fixed block architecture). The block format and the suffix are transparent to
the application, that is, the application does not require internal or external
modifications to create and use the new data set format.

All the VSAM organizations can be either extended format or non-extended
format. To convert a non-extended format data set to extended format, or to
allocate an extended format data set, you need to create an SMS data class
(DC) with the DATASETNAMETYPE field equal to EXT and assign the data
sets to that data class.

1.6 Extended addressability (EA)

Extended addressability (EA) was introduced in DFSMS/MVS 1.3, for KSDS
data sets. Since DFSMS/MVS 1.4, EA is supported in record level sharing
(RLS). With DFSMS/MVS 1.5, support for extended addressability is
extended to all other VSAM record organizations.

With EA, the 4G architectural limit for data set size imposed by using the
4-byte field for the relative byte address (RBA) was eliminated.
Chapter 1. VSAM basics 19

It is important to state up-front that extended addressability and extended
format are not the same concept. Extended format is a way of storing data in
a 3390/3380 logical volume. Extended addressability is the ability of allowing
larger VSAM data sets. However, extended format is a pre-prerequisite for
extended addressability.

Using EA, the size limit for a VSAM data set is determined by either:

• CI size multiplied by 4 GB

• The volume size multiplied by 59

A 4 K CI size yields a maximum data set size of 16 TB, while a 32 KB CI size
yields a maximum data set size of 128 TB. A 4K CI size is preferred by many
applications for performance reasons. No increase in processing time is
expected for extended format data sets that grow beyond 4 GB.

To use EA, the data set must be:

• SMS-managed

• Defined as extended format

EA is available to a data sets associated to a data class defined with:

DSNTYPE=EXT and EXTENDED ADDRESSABILITY=Y

Figure 8 shows the ISMF panel where you specify EF and EA when you
define or alter a data class.

Figure 8. DATA CLASS DEFINE ISMF panel
20 VSAM Demystified

After creating a data class with the attributes above, users can code the
DATACLAS value on their DD statements or let the ACS routines assign the
appropriate class for their eligible data. The only other method in which JCL
can be used to create a KSDS with extended addressability, is through the
DD statement keyword LIKE.

Applications that access a VSAM extended format KSDS through a
user-specified key can take advantage of this support without making JCL or
code changes.

To support EA, many DFSMS macros and commands have changed. To take
advantage of extended addressability, new macro parameters and
sub-parameters related to RBA have been added.

• RPL macro, added the XRBA subparameter to the OPTCD parameter to
indicate that extended addressability will be used. It must be used when
processing a data set by its RBA. For example, OPTCD=(ADR,DIR,XRBA)
instead of OPTCD=(ADR,DIR,RBA).

• TESTCB macro, added XADDR as a possible value to ATRB. It can be
used to test if the data set is in extended addressability format.

• SHOWCB macro, added:

- XAVSPAC parameter to obtain the amount of available space in the
data component or index component, in bytes.

- XENDRBA, to obtain the high-used RBA (HURBA)

- XHALCRBA, to obtain the high-allocated RBA (HARBA)

The fields above use 8 bytes to return the information, instead of 4 bytes
used for non-EA data sets.

Applications that process an EF data set by RBA must provide an 8-byte RBA
when the data set is defined for EA and the type of access uses the RBA
specified. Special provisions are allowed for certain types of requests (for
example GET SEQ,ADR or GET ADR,DIR,LRD).

A major idea in the EA design, is to make applications, such as backup,
transparent to the function. That is, we do not require an extended field
(8-bytes) XRBA, unless it is a positioning request. In the case of a backup
when the data set is to be just read sequentially from the beginning, requiring
no positioning, the extended field is not required. Also, RLS processing does
not support any use of RBA or XRBA access to an EA data set.

With DB2 V1.6 and later EA can be used for table space for.
Chapter 1. VSAM basics 21

A VSAM EF KSDS defined for EA must not be shared with any system
running a release prior to DFSMS/MVS 1.3. Toleration maintenance is
available for DFSMS/MVS 1.2 systems which support VSAM extended format
data sets without EA. A DFSMSdfp toleration PTF allows systems at this level
to issue an error message if any attempt is made to open a VSAM KSDS with
extended addressability. DFSMSdss provides a toleration PTF so that an
error message is issued when a logical DUMP, RESTORE, or COPY
operation is attempted on a KSDS with extended addressability.

IMS supports EF KSDS data sets only when EA is not permitted.

CICS, which provides an interface that allows users to access data by RBA,
is not restricted from using VSAM EA. Contact your IBM representative for
more information on the product level that exploits this support.

Data warehousing projects that require table spaces larger than 1 terabyte
can use the EA support for linear data sets provided in DFSMS/MVS 1.5. To
do this, assign a data class with the extended addressability attribute to the
data set when it is defined. The data class should have the following
attributes specified for it:

Recorg = LS
Data Set Name Type = Extended
IF Extended = Required
Extended Addressability = Yes

Then make sure your data class ACS routine for DB2 permits the use of the
data class created.

The message IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS 116
is produced when you try to go beyond 4 GB in a VSAM data set without EA.
22 VSAM Demystified

1.7 Comparing VSAM data set organizations

Table 1 provides a summary of the characteristics of VSAM data set types
described in this chapter.

Table 1. Comparison of ESDS, KSDS, RRDS, VRRDS, and linear data sets

ESDS KSDS
Fixed-Length
RRDS

Variable-Length
RRDS Linear Data Sets

Records are in the
same order as
they are entered

Records are in
collating
sequence by key
field

Records are in
relative record
number order

Records are in
relative record
number order

No processing at
record level

Records can be
fixed or variable
length

Records can be
fixed or variable
length

Records have
fixed length

Records have
variable length

No processing at
record level

Direct access by
RBA

Direct access by
key or by RBA

Direct access by
relative record
number

Direct access by
relative record
number

Access with
Data-In-Virtual
(DIV)

Consist of data
component only

Consist of data
and index
components

Consist of data
component only

Consist of data
and index
components

Consist of data
component only

Alternate index
allowed

Alternate indexes
allowed

No alternate index
allowed

No alternate index
allowed

No alternate index
allowed

A record’s RBA
cannot change

A record’s RBA
can change

A record’s relative
record number
cannot change

A record’s relative
record number
cannot change

No processing at
record level

Space at the end
of the data set is
used for adding
records

Free space is
used for inserting
and lengthening
records

Empty slots is in
the data set are
used for adding
records

Free space is
used for inserting
and lengthening
records

No processing at
record level

A record cannot
be deleted, but
you can reuse its
space for a record
of the same length

Space given up by
a deleted or
shortened record
becomes free
space

A slot given up by
a deleted record
can be reused

Space given up by
a deleted or
shortened record
becomes free
space

No processing at
record level

Spanned records
allowed

Spanned records
allowed

No spanned
records

No spanned
records

No spanned
records

Extended format
allowed

Extended format
or compression
allowed

Extended format
allowed

Extended format
allowed

Extended format
allowed
Chapter 1. VSAM basics 23

1.8 A brief history of VSAM

In the early 1970s, IBM introduced a collection of three data set organizations
— sequential, indexed, and direct-access, together with the access methods
and utilities to be used on the mainframe operating systems.

This collection of data set organizations is called Virtual Storage Access
Method (VSAM). The word virtual means only that VSAM was introduced at
approximately the same time as the initial IBM virtual storage operating
systems OS/VS1 and OS/VS2.

VSAM was developed to replace the Indexed Sequential Access Method
(ISAM) which is a much older technology. ISAM has major processing
overheads which IBM wanted to improve.

Throughout the years, there have been many improvements to VSAM.
Among these are: extended format and extended addressability which allows
a data set to go beyond the 4 GB limitation, system managed buffering
(SMB) for improved performance, data compression, record level sharing
(RLS), and most recently, data striping and transactional VSAM.

A brief history of the VSAM enhancements and the level of DFSMS/MVS the
were introduced in follows:

DFSMS 2.10

• Data striping and multi-layering for all VSAM data sets

• Transactional VSAM

DFSMS/MVS 1.5

• Data striping for LDS through an SPE

• Extended addressability and SMB support for ESDS, RRDS, VRRDS and
LDS

DFSMS/MVS 1.4

• SMB for KSDS

• RLS support of extended addressability for KSDS

DFSMS/MVS 1.3

• VSAM RLS

• Extended addressability supporting more than 4 gigabytes in a VSAM
cluster for KSDS
24 VSAM Demystified

DFSMS/MVS 1.2

• Data compression for extended format VSAM KSDS (as well as BSAM
and QSAM)

• Partial space release for extended format VSAM KSDS

• More secondary allocation options for extended format VSAM KSDS

• Removal of Backup While Open restrictions

1.9 Choosing a VSAM data set type

During the application development process you need to make decisions
about your data model. Among them are the data organization and the type of
access, performance, and recovery tools you need. VSAM has several
organizations and different ways for accessing your data. How to choose the
one for your application is discussed here.

The major issues are functionality, performance, and recovery capabilities.
In respect to functionality, refer to 1.7, “Comparing VSAM data set
organizations” on page 23. Regarding performance, refer to 2.7.2.7, “Use of
VSAM data sets” on page 110. Refer to Chapter 3, “Recovery of VSAM data
sets” on page 127, to get more information on recovery aspects.

Before you select a particular VSAM organization, you need to have answers
for the following questions:

• What is the main purpose of your data set? Does it look more like a log, a
data base, or an inventory?

• Do you need to access data by a key field in sequential or direct mode?

• Do you need to access the records in sequence, skip sequential,
randomly, or all of them?

• Are all the logical records the same length?

• Does the record length change?

• Do you need to have insertions and deletions?

• Is the data set going to be extended ?

• How often will you need to delete records?

• Will you use spanned records?

• Do you want to keep the data in order by the contents of the key field?

• Do you want to access the data by an alternate index?

• Do you want to explore DIV?
Chapter 1. VSAM basics 25

• Do you want to use data compression?

• Do you need the utility functions provided by IDCAMS?

When you have answered these questions, we can use them to choose the
best organization for your data set. Remember that VSAM data sets cannot
be processed using non-VSAM applications. Similarly, non-VSAM data sets
cannot be processed using the VSAM access method.

Following are our recommendations.

• Use QSAM or BSAM if:

- You use no direct processing.

- There are no insertions or deletions, and no change in the logical
record length.

- Record additions are only at the end of the data set.

- You are not concerned about IDCAMS functions.

- You want to have data compression.

- Performance and easy recovery are main issues.

• Use KSDS if:

- The data access will be sequential, skip sequential, and direct access
by a key field.

- You would prefer easy programming for direct data processing.

- There will be many record insertions, deletions, and logical record
length variations.

- You may optionally access records by an alternate index.

- Complex recovery (due to index and data components) is not a issue.

- You want to use data compression.

- The data is suitable for a sort of mini-database in an online application
environment like CICS/VSAM.

• Use VRRDS if:

- You have the same requirements as for a KSDS, but will use record
number instead of a key field as argument.

• Use RRDS if:

- The record processing will be sequential, skip sequential, or direct
processing.

- Easy programming for direct processing is not a requirement.
26 VSAM Demystified

- The argument for accessing data in direct mode is a relative record
number, not the contents of a data field (key). RRDS is suitable for the
type of records identified by a continuous and dense pattern of
numbers.

- All records are fixed length.

- There are a small number of record insertions and deletions, and all
the space for insertions must be pre-allocated in advance.

- Performance is an issue. RRDS performance is better than KSDS, but
worse than QSAM or BSAM.

• Use ESDS if:

- You need sequential and direct record processing (not by a key field,
but by an RBA).

- You are using only logical record insertions or deletions (in the
application control).

- You are using a batch processing application.

• Use LDS if:

- You want to exploit DIV.

- Your application manages logical records.

- Performance is an issue.

A final comment is that many times, you will be using a specific VSAM
organization depending on the software product you are running — for
example, DB2 uses LDS data sets. In such a case, this will be your only
option.

1.10 Accessing VSAM data

VSAM data sets can be accessed using several methods, for example,
IDCAMS, DITTO, batch and CICS application programs, and DB2.

Batch and CICS application programs can be written using languages that
support VSAM, such as COBOL and Assembler. To obtain VSAM services,
these application programs use VSAM macros. For details, refer to
DFSMS/MVS Macro Instructions for Data Sets, SC26-4913.

1.10.1 IDCAMS
Access method services (AMS) is a service program used with VSAM to
establish and maintain catalogs and data sets invoked by JCL or TSO.
Chapter 1. VSAM basics 27

The IDCAMS program can be run with the AMS command and its parameters
as input to the IDCAMS program. You can call the IDCAMS program from
within another program and pass the AMS command and parameters to the
IDCAMS program.

We can create and process the various types of VSAM data sets using
IDCAMS, which is included with DFSMS/MVS. The majority of these
functions are covered in this book.

There are two types of AMS commands for catalogs and user data sets,
functional commands and modal commands (see Figure 9). Functional
commands are used to request the actual work (for example, defining a data
set or listing a catalog).

Modal commands allow the conditional execution of functional commands.
Time sharing option (TSO) users can use functional commands only. See
DFSMS/MVS Access Method Services for the Integrated Catalog Facility,
SC26-4906 for more information.

Figure 9. AMS commands

IDCAMS

LOADING/
UNLOADING

COPYING

LIST
DATA
SETS

DELETE
VSAM

OBJECTS

MODIFY
DATA SET

ATTRIBUTES

LIST
CATALOG

INFORMATION

CREATE
VSAM

OBJECTS

DEL
ET

E PRINT

REPRO

EXPORT

D
E

F
IN

E

LISTCAT

ALTER

Access Method Services (AMS)

IMPORT
28 VSAM Demystified

IDCAMS can be invoked:

• As a job or jobstep by specifying PGM=IDCAMS on the EXEC card

• From a TSO terminal

• From an application program

1.10.2 Accessing HFS files through VSAM
You can access an HFS file through VSAM in one of the following ways:

• JCL DD statement specifying PATH=pathname

• SVC99

• TSO ALLOCATE command

HFS files are simulated as an ESDS. However, since HFS files are not
actually stored as ESDSs, VSAM cannot simulate all the characteristics of a
sequential data set. As a result, there are certain macros and services which
have incompatibilities or restrictions when dealing with HFS files. Refer to
DFSMS/MVS Using Data Sets, SC26-4922 for more information.

1.10.3 DITTO/ESA
DITTO is a very powerful utility that you can use to browse, edit, and delete
VSAM records.

You can start DITTO in full-screen mode from a TSO terminal. Check with
your system programmer how to invoke DITTO as start procedures may vary
with the installation.

In full-screen mode, you can use menus, online help, and interactive browse
and update functions. You will probably find full-screen mode the most
convenient way to run DITTO, especially if you are a new DITTO user.

You can also run DITTO in line, command, or batch modes. Refer to
DITTO/ESA V1R3 User’s Guide, SH19-8221 for more information on using
DITTO.
Chapter 1. VSAM basics 29

Figure 10 shows the DITTO Task Selection Menu. Choose option 1 then
option 3 to browse a VSAM data set.

Figure 10. DITTO selection panel

Choose option 2 on the Task Selection Menu, then option 1 to edit a VSAM
data set.
30 VSAM Demystified

Figure 11 shows the DITTO edit menu.

Figure 11. DITTO edit function
Chapter 1. VSAM basics 31

Figure 12 shows an example of editing a record using DITTO.

Figure 12. VSAM edit panel
32 VSAM Demystified

1.11 Defining VSAM data sets

You can define a VSAM data set using any of the following methods:

• IDCAMS DEFINE or ALLOCATE commands.

• ALLOCATE command from a TSO terminal. The TSO commands are
described in OS/390 TSO/E Command Reference, SC28-1969.

• JCL DD statements. All data sets can be defined directly through JCL.
For information on using JCL, see OS/390 MVS JCL Reference,
GC28-1757 and OS/390 MVS JCL User's Guide, GC28-1758.

• Dynamic allocation. The DYNALLOC macro is described in OS/390 MVS
Authorized Assembler Services Guide, GC28-1763.

1.11.1 Using IDCAMS
When using IDCAMS to define a VSAM data set, you specify the following:

• Data set name or cluster name. Component names are optional.

• Data set type. The default is INDEXED (KSDS).

INDEXED KSDS

LINEAR LDS

NONINDEXED ESDS

NUMBERED RRDS

• Space allocation, both primary and secondary allocations, and the
volumes on which the cluster’s components are to have have space.

• Data set attributes, such as recordsize and CI size. For a KSDS, you
specify key information and free space.
Chapter 1. VSAM basics 33

Figure 13 shows the syntax of the DEFINE command and required
parameters.

Figure 13. DEFINE command required parameters

1.11.2 System-managed data sets
For SMS-managed VSAM data sets, only the NAME is required. DFSMS
must be active to define SMS-managed data sets. You can specify data class,
management class and storage class parameters and take advantage of the
attributes defined by your system administrator.

This is an example of a JCL to define an SMS-managed VSAM data set.

***************************** Top of Data ******************************
//DEFVSAM JOB 'DEF SMS-MANAGED VSAM DS',MSGCLASS=X,NOTIFY=&SYSUID
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER -
(NAME(DAWN.KSDS) -
STORAGECLASS(FAST) -
DATACLASS(KEYED))

/*
**************************** Bottom of Data ****************************

1.11.3 Parameters of interest
Here we discuss different DEFINE parameters. However, we will focus on
parameters that affect performance.

D E F IN E C L U S T E R -
(N A M E (e n try n a m e))-

C Y L IN D E R S (p rim a ry s e c o n d a ry) |
K IL O B Y T E S (p rim ary s e c o n d ary) |
M E G A B Y T E S (p rim ary s e c o n d ary) |
R E C O R D S (p rim a ry s e co n d a ry)|
T R A C K S (p rim a ry s ec o n d a ry) -
V O L U M E S (vo ls er[vo lse r.. .]) -

D A T A (p a ra m e te rs) -
IN D E X (p a ra m e te rs) -
C A T A L O G (s u b p a ra m e ters)
34 VSAM Demystified

1.11.3.1 CA size
The CA size for the data component is determined by the smaller value
specified for primary and secondary allocation in the DEFINE command.
However, CA size cannot be greater than one cylinder.

• Space allocations can be specified in cylinders, kilobytes, megabytes,
records, and tracks. A kilobyte or megabyte will resolve to either tracks or
cylinders. A record allocation resolves to tracks.

The following are the results when allocating a VSAM data set:

• If value < 1 cylinder, CA size equals track allocation.

• If value > 1 cylinder, CA size equals one cylinder.

The CA size for index component is set to one DASD track.

1.11.3.2 Free space options
Free space is the reserved space to be held free when the cluster is initially
loaded or when a mass insert is done. The purpose is to allow allow data
records to be inserted or expanded in length when updated. The
FREESPACE parameter applies only to the data component of KSDS and
VRRDS.

You can specify the amount of CI and CA free space when you define the
data set using the IDCAMS DEFINE command. You can change the amount
of free space using the IDCAMS ALTER command. Free space is specified as
a percentage.

For a CI, VSAM takes the specified percentage times the actual CI size
rounded down to a full byte. VSAM does not care about the record length.

The CA percentage specifies the amount of CIs to be held per CA. The
number of empty CIs per CA is the number of CIs per CA times the CA
percentage. The track required for the sequence set is not included in the
calculation of CIs per CA, and the calculated figure is rounded down to the
next integer.If the figure is less than one, it is the same as specifying 100%
for the CA percent value.

If you specify 100 (the maximum value) for both the CI and CA percentage,
each control interval will contain one record and each control area will contain
one used control interval.

If the FREESPACE amount is altered after the data set is initially loaded, and
sequential insert processing is used, the allocation of free space is not
honored.
Chapter 1. VSAM basics 35

The syntax of the FREESPACE parameter is

FREESPACE(CI-percent CA-percent)

We recommend that you specify:

FREESPACE(20 20)

Specify CA free space to avoid CA splits. CI splits are not as time-consuming
as CA splits.

1.11.3.3 Share options
The SHAREOPTIONS parameter specifies how the component or cluster can
be shared among users within one system or across systems. Refer to 4.2.4,
“Cross-region options” on page 188 and 4.2.5, “Cross-system options” on
page 189 for more details.

SMS-managed volumes and catalogs containing SMS-managed data sets,
must not be shared with non-SMS systems.

The syntax for the SHAREOPTIONS parameter is

SHAREOPTIONS(crossregion crosssystem)

1.11.3.4 IMBED and REPLICATE
The IMBED parameter requires that the sequence set is written as many
times as it can fit in the first track of each data CA.

With the REPLICATE parameter, each index record at all levels is written as
many times as it can fit in a track.

Support for IMBED parameter has been dropped with DFSMS/MVS V1R5.
If specified, it will be ignored and no message will be issued.

NOTE:
36 VSAM Demystified

Chapter 2. Performance

How can you get the most out of your VSAM data sets? How can you improve
data storage and retrieval? What parameters can be used when you define a
VSAM data set to enhance data access?

This chapter describes the VSAM functions that can enhance performance.
Hints and tips are provided to help you implement these VSAM functions.

Before we discuss VSAM performance, we will go over some performance
basics.

2.1 Service level agreement (SLA)

The human perception of the performance of a system is subjective,
emotional, not precise, and related to throughput (transactions per second),
response time, and transaction distribution.

In order to make it more objective and related to business needs, the concept
of SLA was introduced.

SLA is a type of contract between Information Systems and user departments
that objectively describes:

• Average transaction response time (Tr) for:

- Network

- Input/output (I/O)

- CPU

- Total resources

• The distribution of the response times (a measurement about how erratic
they are)

• The throughput, also called external throughput rate (ETR), measured in
ended transactions per second of elapsed time (not CPU time)

• System availability; the percentage of time that the system is available to
the end user
© Copyright IBM Corp. 2001 37

2.2 Transaction performance

A transaction is a business unit of work produced by an online or batch
interaction with an end user. It can be a CICS, a TSO, a WEB, an APPC, a
DRDA, or even a batch interaction. If you are in workload manager (WLM)
goal mode, all these transactions are monitored and accounted by OS/390.

To characterize the performance of a transaction, we need to understand its
different response time components. Figure 14 shows general response time
components, where:

• ETR = Ne/ T

ETR is the External Throughput Rate, Ne is the number of ended
transactions, T is the elapsed time

• Tr = Ts + Tw

Ts is Service Time, Tw is Waiting Time, and Tr is Response Time

Figure 14. Response time components

Tw (CPU): Time with ready dispatchable units, but not enough dispatching priority.
Tw (I/O): Time with I/Os delayed in UCB or channel subsystem.
Tw (TP): Time in the VTAM or TCP/IP queue.
Tw (Storage): Time suffering a page fault or being swapped-out.
Tw (Other): Time delayed by operator, ENQ, data set recall, server address space.
Ts (CPU): Time with dispatchable units executing CPU.
Ts (I/O): Time with I/Os being executed (connected or disconnected).
Ts (TP): Time being transported in the network.

Tw Ts

Tr

Exploding the Response Time (Tr)

Tw
CPU

Tw
I/O

Tw
TP

Tw
Storage

Tw
Other

Ts
CPU

Ts
I/O

Ts
TP
38 VSAM Demystified

• Exploding the above formula, we have:

Ts = Ts(CPU) + Ts(IO) + Ts(TP)

Tw = Tw(CPU) + Tw(IO) + Tw(TP) + Tw(Storage) + Tw(Other)

• There is also one formula relating the Tr with ETR, derived by Little’s law:

ETR = N/ (Tt + Tr)

In this formula, N is the average number of users sending transactions,
and Tt is the average thinking time of these users. Following are some
considerations regarding this formula:

- The variables that more intensively affect the ETR are N and Tt.
Therefore, you should never accept an SLA specifying ETR, because
the only variable that the IS department can directly control is Tr.

- However, experiences show that when Tr is in a sub-second value, the
value of Tt drops dramatically. This fact has to do with the human
behavior in front of a terminal. If the machine responds fast (in a
sub-second value), we also respond fast. There is some work done by
Arvind J. Thadhani showing this experience.

Transaction response time is the best way to characterize the performance of
a transaction. Here, the target is to reduce its value and consequently to
increase the ETR figures (when the value is below one second). Remember
that in RMF reports the Ts(TP) and Tw(TP) are not included.

2.3 Performance management

Performance management is the activity in an installation that monitors and
allocates data processing resources to applications according to a service
level agreement (SLA).

There are three main ways to solve performance problems:

• Buy: You can simply buy more resources.

• Tune: You can create the illusion you bought more resources. This is
know as tuning. Capability to do this implies that previously, you had been
wasting resources, and you are now making full use of them. As with
purchasing, there is a cost in people resources to tune. While it may be
higher, this cost is always less visible than when purchasing.

• Steal: You can “steal” the resources from a less critical application. Here
the cost is in lower service to the application from which the resources
were stolen.
Chapter 2. Performance 39

2.3.1 I/O performance
As CPU speeds increase, the I/O time is the determinant factor in the
response time. So, you can get excellent response time returns by reducing
I/O wait time and I/O service time. However, experience has shown that when
you increase the I/O rate (for example, for data striping), suddenly the
bottleneck is moved from the I/O subsystem to the processor.

Generally speaking, you can reduce I/O service time by software or hardware
techniques. The software techniques are:

• Virtual address space and data space buffers

• Hiperspace buffers

• Data compression

The hardware techniques are:

• Faster channels (FICON, ESCON) to the processor

• Faster device paths (adapters) to the controllers

• Larger controller cache

• More DASD subsystem concurrency, for example, parallel access volumes
(PAV) in Enterprise Storage Server (ESS).

2.4 VSAM performance management

The goal of VSAM performance management is to decrease the values of I/O
wait time (Tw(IO)) and I/O service time (Ts(IO)) — that is, the I/O response
time (Tr(IO)), for the transactions accessing VSAM data. The concentration is
on transactions most closely linked to your business needs.

In this performance chapter, we use two approaches in order to help you to
improve VSAM performance. First, we discuss all the VSAM external
parameters whose values may affect performance. We give
recommendations based on experience, on how those parameters should be
set. This will be known as “rule-of-thumb” (ROT) mode, more oriented to help
an end user.

In the second approach, we simulate a scenario (as real as possible), where
one or several VSAM data sets are causing performance problems to key
transactions in a real installation. It is more oriented to help a system
programmer. We follow a methodology to fix the situation. Here some of the
recommendations covered in the ROTs are presented again, now connected
with a specific system behavior.
40 VSAM Demystified

Also, other factors not connected to VSAM parameters — such as I/O
configuration delays, SMS storage class attributes, use of Hiperbatch, and
heavy CPU usages — are introduced and discussed.

Throughout this chapter, you see a set of screens containing real RMF
reports covering VSAM I/O measurements related to the theories presented.
These measurements were obtained in our lab setup described in B.1.1,
“General lab description” on page 223. Have a look, when you can.

2.5 VSAM rule-of-thumb (ROT) mode

Before we start, let us make a general statement about VSAM cluster
parameters affecting performance and their defaults. You should note that
these defaults were established a long time ago, when virtual storage was all
below the 16-MB line; central storage restricted; the DASD was slow,
removable, and expensive; and channels were a scarce resource.

Therefore, the defaults are outdated in many cases. The reason IBM does not
change the defaults is to maintain compatibility with your existing workload.
Remember that compatibility is an important feature protecting your
investment. You do not need to throw out your code and hardware when
OS/390 changes a release. However, keep in mind that these defaults can be
easily updated through JCL, the ACB macro, data class constructs, ACS
routines, or IDCAMS.

2.5.1 Invalid rules-of-thumb (IROTs)
Another important point to mention is that you may have heard many
recommendations about data set placement and the effect on I/O
performance. We will call these recommendations “invalid rules-of-thumb”
(IROTs). Generally speaking, they are out-of-date due to the introduction of
the RAID controllers and enhancements to channel programs, such as these:

• The 3390/3380 volume concept no longer exists, and we do not know
where their logical tracks are located on the disks, so there are no seek
arm movement considerations.

Also, in the past we had several changes in the device geometry as new
products were introduced. Now the logical 3390/3380 geometry will still be
valid for some time because it is not affected by enhancements to the disk
controllers. The device independence recommendation (for units of
allocation, for example), due to changes in future track or cylinder
geometry, is not a consideration.
Chapter 2. Performance 41

• In the case of a cache miss, the channel always reads (or writes) in cache,
asynchronously in relation to the disk, so there are no extra revolutions.

• The existence of the Define Extent CCW and the Format CCW for the
Enterprise Storage Server (ESS).

The following recommendations (IROTS), are no longer valid:

• Place your VTOC around the middle of the volume.

• If you need to place two active data sets in the same volume, place them
close to each other, to avoid arm stealing along seeks.

• Do not allow much secondary allocation in the same volume because of
the embedded long seeks in the same data set.

• Use VSAM KSDS embedded sequence set index records to minimize
seeks.

• Use VSAM KSDS replication to avoid unnecessary revolutions.

• When allocating a data set on device dependent geometry, use cylinders,
not tracks, for better performance.

• It is better to use a device independent geometry for allocation units (for
example, records) to avoid modifications when the 3390/3380 geometry
changes.

• Reorganize your KSDS data set after some CA splits in order to avoid long
embedded seeks. (For information on VSAM KSDS data set
reorganization refer to 4.1, “Reorganization considerations” on page 181.)

• Avoid channel utilization above 30% to inhibit RPS misses and another
DASD revolution.

• Use VSAM keyrange to have control over the allocation of the key ranges
of your data set.

2.6 Parameters affecting performance

The following VSAM parameters and options can affect performance.

2.6.1 Allocation units
When you define your new data set, either the end user or SMS must specify
the amount of space to be allocated for it. One of the allocation functions, the
creation of the DSCB in the VTOC, is done by the DADSM routine. If SMS is
active, you can specify a data class and take advantage of the space
allocation set by your storage administrator. If you choose to specify space
42 VSAM Demystified

explicitly, you can specify it for VSAM data sets in units of records, kilobytes,
megabytes, tracks, or cylinders.

If you specify records as the allocation unit, the number of records you
declare is multiplied by RECORDSIZE(AVERAGE) value, to derive the space
in bytes. This keyword can indicate the maximum value allowed for the record
length. If the maximum record length is exceeded, VSAM rejects the new
record.

Note that VSAM data sets cataloged in an integrated catalog facility (ICF)
catalog are allocated with the CONTIG attribute. If the allocation unit is
TRACKS, the primary and secondary allocations are in contiguous tracks.
This may cause unexpected allocation abends.

DADSM only accepts allocation requests in tracks or cylinders. The units
specified (records, kilobytes, or megabytes) are converted by IDCAMS before
the DADSM request. The amount of space you allocate should depend on the
size of your data set and the index options you have chosen.

Usually you declare a primary and a secondary amount of space for
allocation purposes. Do not define too small an amount of secondary space
allocation value, especially for a KSDS or a VRRDS data set. There are a
large number of I/O operations involved when the secondary allocation takes
place.

When the primary amount on the first volume is used up, a secondary amount
is allocated on that volume by the end-of-volume (EOV) routine. Refer to
4.5.3, “End-of-Volume (EOV) macro” on page 202, for more details. VSAM
acquires space in increments of control areas (CAs). Each time a new record
does not fit in the allocated space, EOV allocates more space in the
secondary space amount. This can be repeated until the volume is out of
space or the extent limit is reached. Depending on the type of data set
allocation request, a new volume may be used.

2.6.1.1 Guaranteed Space
The allocation function depends on whether the data set has the Guaranteed
Space attribute.

The Guaranteed Space storage class SMS attribute lets you reserve space
on specific volumes for data sets that require special placement to meet
performance or availability requirements. For example, IMS logs that are
duplexed by IMS to improve availability should be on separate volumes.
Chapter 2. Performance 43

Typically, you use storage class performance and availability attributes and
storage group assignments to determine where to place your data set. You
assign storage groups in your storage group ACS routine. SMS then selects
volumes by evaluating each candidate's ability to satisfy the performance,
availability, and space requirements for the data set. To place data sets on
specific volumes, assign a storage class to the data set that supports
guaranteed space and maps to the correct storage group. If the resulting
storage group does not contain the specified volume, or all the volumes are
not in the same storage group, the allocation is unsuccessful.

For non-guaranteed space data set allocation, when you allocate space, it is
possible for the user to specify whether to use primary or secondary
allocation amounts when extending to a new volume. This is done with an
SMS DATACLASS parameter for VSAM attributes, as pictured in the following
screen of the ISMF application.

For a Guaranteed Space data set allocation, the following conditions must
met:

• All volumes specified belong to the same storage group.

• The storage group to which these volumes belong is in the list of storage
groups selected by the ACS routines for this allocation.

It is recommended to allocate space at the data component level, because
this is the component that you are able to size. VSAM allocates space as
follows:

• If allocation is specified at the cluster or alternate index level only, the
amount needed for the index is subtracted from the specified amount. The
remainder of the specified amount is assigned to data.

ADDITIONAL The ADDITIONAL VOLUME AMT field shows the type of allocation
VOLUME AMT amount when a VSAM data set in extended format begins allocation
---(15)--- on subsequent new volumes.

Possible values:

PRIMARY Primary allocation amount has been requested.

SECONDARY Secondary allocation amount has been requested.

--------- If the value has not been specified. The system will use
the default value of Primary.
44 VSAM Demystified

• If allocation is specified at the data component level only, the specified
amount is assigned to data. The amount needed for the index is in
addition to the specified amount.

• If allocation is specified at both the data and index levels, the specified
data amount is assigned to data and the specified index amount is
assigned to the index.

• If secondary allocation is specified at the data level, secondary allocation
must be specified at the index level or the cluster level.

2.6.1.2 Optimizing control area (CA) size
Before we discuss this topic, we want to clarify that when we say cylinder and
track, we are referring to the logical 3390/3380 cylinder and track, not the
cylinder and track of the disks in the RAID DASD controllers.

Regarding optimizing the control area (CA) size, there is no way to explicitly
specify this. Generally, the primary and secondary space allocation amounts
determine the CA size, as follows:

• If either the primary or secondary allocation is smaller than one cylinder,
the smaller value is used as the CA size.

- TRACKS(100,3): This results in a 3-track CA size.

- TRACKS(3,100): This results in a 3-track CA size.

- KILOBYTES(100,50): The system determines the control area based
on 50 KB, resulting in a 1-track CA size.

- RECORDS(2000,5): Assuming that 10 records would fit on a track, this
results in a 1-track CA size.

• If both the primary and secondary allocations are equal to or larger than
one cylinder, the CA size is one cylinder. An exception is for data striping,
where the CA size can be 16 tracks (one more than the cylinder) — the
maximum size for a CA.

- CYLINDERS(5,10): This results in a 1-cylinder CA size.

The index CI size and buffer space can also affect the CA size. The previous
examples assume the index CI is large enough to handle all the data CIs in
the CA, and the buffer space is large enough not to affect the CI size.

A spanned record cannot be larger than a CA minus the control information
size (10 bytes per CI for fixed logical records length). Therefore, do not
specify large spanned records and a small primary or secondary allocation
which is not large enough to contain the largest spanned record.
Chapter 2. Performance 45

Note: If space is allocated in kilobytes, megabytes, or records, VSAM sets
the CA size equal to multiples of the minimum number of tracks or cylinders
required to contain the specified kilobytes, megabytes, or records. Space is
not assigned in units of bytes or records.

If the CA is smaller than a cylinder, its size is an integral multiple of tracks,
and it can span cylinders. However, a CA can never span an extent of a data
set, which is always composed of a whole number of CAs.

CA size has significant performance implications. One-cylinder CAs have the
following advantages:

• There is a smaller probability of CA splits.

• The index is more consolidated. One index CI addresses all the CIs in a
CA. If the CA is large, fewer index records and index levels are required.
For sequential access, a large CA decreases the number of reads of index
records.

• There are fewer sequence set records. The sequence set record for a CA
is always read for you. Fewer records means less time spent reading
them.

• If you have allocated enough buffers, a large CA allows you to read more
buffers into storage at one time. A large CA is useful if you are accessing
records sequentially.

• The overlap between I/O and CPU for sequential processing is done in a
CA boundary. When reached the application must wait until the last
input/output to the CA is done before proceeding to the next CA. The I/O
operations are always scheduled within CA boundaries.

The following disadvantages of a one-cylinder CA must also be considered:

• If there is a CA split, more data is moved.

• During sequential I/O, a large CA ties up more real storage and more
buffers.

2.6.1.3 Partial release
Partial release is used to release data (not index) unused space from the end
of an extended format data set. Refer to 1.5, “Extended format data set” on
page 18. Partial release is specified through the SMS management class or
by the JCL RLSE subparameter.
46 VSAM Demystified

All space after the high used RBA (HURBA) is released on a CA boundary up
to the high allocated RBA (HARBA). Refer to 3.9, “IDCAMS LISTCAT output
fields” on page 166, to get more information on HURBA and HARBA. If the
high used RBA is not on a CA boundary, the high used amount is rounded to
the next CA boundary. Partial release restrictions are:

• Alternate indexes (AIXs) opened for path or upgrade processing are not
eligible for partial release. The data component of an AIX when opened as
cluster could be eligible for partial release.

• Partial release processing is not supported for temporary close.

• Partial release processing is not supported for data sets defined with
guaranteed space.

• Extended format is a requirement.

2.6.1.4 Allocation constraint relief
Users occasionally encounter data set allocation or extension failures (the
X37 equivalent type of abends) because there is not enough space available
on a volume to satisfy the request. SMS alleviates this situation to some
extent by performing volume selection, checking all candidate volumes
before failing an allocation.

You can also use the Space Constraint Relief and Reduce Space Up To (%)
attributes to request that an allocation be retried, if it fails due to space
constraints. Refer to 3.4, “Space Constraint Relief parameter (fewer X‘037’
abends)” on page 131.

Recommendations:

• Because cylinders and tracks are units of space not direct linked to your
application planned DASD capacity, you should specify records, kilobytes,
or megabytes.

• Do not define too small an amount of secondary allocation for a
KSDS/VRRDS data set. There are a large number of I/O operations
involved when the secondary allocation takes place.

• It is recommended to allocate space at the cluster or data levels.

• Do not use tracks as an allocation unit; this forces the CONTIG attribute
for secondary allocations.

• Avoid either primary or secondary allocation smaller than one cylinder, it
makes the CA size less than one cylinder.

• Consider partial release, if applicable.

• Consider constraint relief, if applicable.
Chapter 2. Performance 47

2.6.2 Buffer space
You specify the BUFFERSPACE value at IDCAMS DEFINE time. The
BUFFERSPACE value in the catalog entry for the data set is the minimum
amount of buffer space, and it applies to the whole cluster. It helps VSAM to
determine the CI size of the data components and index components. For
more details; refer to 2.6.9.1, “How BUFFERSPACE and BUFSP affect
buffering” on page 60.

Recommendations:

• Do not specify BUFFERSPACE. Let it default.

2.6.3 Control interval size
There are two types of control intervals (CIs) in a KSDS and VRRDS: the
index and the data. The other VSAM organizations only have data CIs. Refer
to 1.3.3, “Control interval” on page 3. The data CI and index CI sizes are
declared in the IDCAMS DEFINE command and kept in the catalog. In the
following sections we offer recommendations about how to size both.

2.6.3.1 Data control interval
There are arguments favoring both large and small CI sizes. Let us look at
each of these possibilities:

• For sequential processing, larger data CI sizes are desirable. For
example, given a 16 KB data buffer space, it is better to read two 8 KB CIs
with one I/O operation than four 4 KB CIs with two I/O operations.

Another good point about a large CI is a more centralized management of
the free space CI, and consequently fewer CI splits.

• For direct processing, smaller data CIs are desirable because you are only
retrieving one logical record at a time, then avoiding useless data transfer.

• For data set shared access within an address space refer to 4.2.3,
“Intra-address space sharing” on page 185, the size of the CI affects the
amount of data locked by VSAM; the smaller, the better.

• If you intend to use hiperspace ESO (in LSR) for a second level of
buffering, if the CI size of the data component is not a multiple of 4k, both
virtual space and hiperspace is wasted.

In conclusion, for data sets accessed both randomly and sequentially, a small
data CI with multiple buffers for sequential processing can be a good choice.
48 VSAM Demystified

2.6.3.2 Index control interval
For KSDS and VRRDS, specify CI size with the data component only; in this
case VSAM calculates the index CI size value. If you define CI size for the
cluster, this value is used for both data CI and index CI. It is better to let
VSAM calculate the index CI size (which is generally smaller than data CIs).
The size of the index CI affects:

• The number of levels in the index set. However, the number of indexes
affects the performance only for very large clusters.

• The usable capacity of a data CA. Sometimes a small index CI size may
cause some loss in the usable capacity of the associated data CA. For the
calculation of the CI index size, VSAM assumes a compressed key of 5
bytes. Sometimes the key does not compress well and this assumption is
underestimated. To determine if your CI size is too small and results in
losing data CA space; refer to 4.1, “Reorganization considerations” on
page 181.

Use your automation console to detect the following message, generating an
alert:

There is no external parameter to use to define the CA size. However, you
may influence the size of the CA when you allocate a new data set. Refer to
2.6.1, “Allocation units” on page 42 for more details. Also refer to 2.8, “VSAM
and SmartBatch” on page 121, to see how the CI size can be determined
when you use SmartBatch.

Recommendations:

• For sequential access, define data CIs with 16 KB or larger.

• For random access, define data CIs with 4 KB.

• For mixed random and sequential access, define data CIs with 4 KB (for
random access) and plenty of buffer space in the buffer pool (allowing
CCW chaining for sequential access).

• Let VSAM derive the size of the index CI. Define it yourself only when you
are losing data CA capacity.

IDC3351I ** VSAM I/O RETURN CODE IS 212

Unable to split index; increase index CI size
Chapter 2. Performance 49

2.6.4 Free space
Free space specifies, through IDCAMS DEFINE (in the catalog), the
percentage of each data CI and data CA is to be set aside as free space
when the cluster KSDS or VRRDS is initially loaded or when a mass insertion
is done. There is no free space external specification for index CIs or CAs.

Free space is used to reduce the number of CI and CA splits along insertions
or updating in-place records with a length increase. Refer to 1.3.5, “Splits” on
page 4. A CA split causes considerable overhead (during the split), since
approximately half of the CIs from the CA are moved to the end of the data
set. Performance is enhanced when CA splits are reduced. However, there is
no concern (with the exception of some sequential processing remarks) about
any negative aspect of the spreading of data caused by the split. The
performance problem has to do with the split itself.

When you specify free space, ensure that the CI free space percentage
results in enough free space to hold at least one logical record. You can
ensure this by taking into account the logical record length, the size of the CI,
and the length of CIDF and RDFs. Following is a numeric example:

• Supposing a fixed length record data set, where each CI is 4096 bytes,
10 bytes are reserved for control information (2 RDFs and 1 CIDF). Each
logical record has 1000 bytes and you want to reserve room for 10%
inclusion.

• If you specify 10% of CI free space VSAM (record management) puts
aside 410 bytes (4096 * 0.10) for free space. The logical record space
threshold is 3676 (4096 - 420) bytes. The space between the threshold
and the control information is reserved as free space.

• Because the records loaded in the data set are 1000-byte records, there is
only space for three records, leaving 1086 (410 + 676) for insertions. In
this free space you can fit another logical 1000 byte record, so your free
space setting is correct. There are 86 bytes of unused space. All this
calculation is done for a non-compressed data set. For compression
information refer to 2.6.10, “Data compression” on page 84.

For CA free space, VSAM ensures that at least one CI per CA remains empty
during loading when you declare a CA FREESPACE amount other than zero.

Too much free space in a CI or CA can result in:

• Increased number of index levels, which affects run times for direct
processing slightly.

• More DASD storage required to contain the data set.
50 VSAM Demystified

• More I/O operations required to sequentially process the same number of
records. Note that these extra I/O operations are only affected by an
excess of CI free space. CA free space does not increase the number of
I/O operations in a sequential read because totally free CIs are not moved
to storage. Direct access data transfer for the data component is not
affected by CI free space.

Too little free space can result in an excessive number of CI and CA splits,
with consequences such as:

• The CA splits are time consuming, due to the overhead (during the split),
since approximately half of the CIs from the CA are moved to the end of
the data set.

• CI and CA splits may also affect the sequential processing because the
DASD controller only detects logical 3390/3380 physical sequence. Splits
make the logical sequence different from the physical sequence, and the
controller only detects the physical sequence pattern.

Determine the amount of CI free space based on the percentage of record
additions expected, and their distribution.

VSAM offers two insert record techniques for a split:

• Split CIs and CAs at the insert point (SIS).

• Split at the midpoint (NIS, default) when doing direct PUTs.

If you know in advance the pattern of the keys being inserted, you can take
advantage of it by choosing the technique best suited for the application.

Recommendations:

• Determine the amount of CI free space based on the percentage of record
additions expected, and their distribution:

No additions. If no records will be added and if record sizes will not be
changed, there is no need for free space.

Few additions. If few records will be added to the data set, consider a free
space specification of (0 0). When records are added, new CAs are
created to provide room for additional insertions.

If the few records to be added are fairly evenly distributed, CI free space
should be equal to the percentage of records to be added (FSPC (nn 0),
where nn equals the percentage of records to be added.)
Chapter 2. Performance 51

Evenly distributed additions. If new records will be evenly distributed
throughout the data set, CA free space should equal the percentage of
records to be added to the data set after the data set is loaded. (FSPC (0
nn), where nn equals the percentage of records to be added.)

Unevenly distributed additions. If new records will be unevenly distributed
throughout the data set, specify a small amount of free space. Additional
splits, after the first, in that part of the data set with the most growth will
produce CIs with only a small amount of unneeded free space.

Mass insertion. If you are inserting a group of sequential records, you can
take full advantage of mass insertion by using the ALTER command to
change free space to (0 0) after the data set is loaded.

Additions to a specific part of the data set. If new records will be added to
only a specific part of the data set, load those parts where additions will
not occur with a free space of (0 0). Then, alter the specification to (n n)
and load those specific parts of the data set.

• Choose, if possible between insert point or midpoint techniques.

2.6.5 Index options
There are two index options associated with a cluster defined in the IDCAMS
DEFINE command and stored in the catalog:

• REPLICATE, where each index record is replicated (written on a track of a
3390/3380 DASD volume) as many times as it fits aims to reduce
rotational delay in retrieving the index record.

Due to the fact that the 3390/3380 volume does not exist in today’s DASD
controllers and we do not know where their logical tracks are located on
the disks, there are no seek arm movement considerations. The use of the
REPLICATE option is not recommended. Refer to 2.5, “VSAM
rule-of-thumb (ROT) mode” on page 41, for more information about the
changes in the performance aspects due to the implementation of the new
RAID controllers.

• IMBED, where the index sequence set (the lower level index) is placed
adjacent to the corresponding data CA.

Recommendations:

• Do not use REPLICATE, take the default of NOREPLICATE. Beginning
with DFSMS 1.5 this parameter is no longer valid. No warning message is
issued.

• Do not use IMBED. Beginning with DFSMS/MVS V1.5 this parameter is no
longer valid. No warning message is issued.
52 VSAM Demystified

2.6.6 Share options
There are four important mechanisms to implement VSAM data set integrity,
they are:

• VSAM SHAREOPTIONS play an important role in VSAM integrity,
specifying whether and to what extent data is to be shared among tasks in
one or multiple OS/390 address spaces.

• ENQ/reserve serialization functions.

• JCL disposition (OLD or SHR), which also issues an ENQ.

• Record level sharing (RLS) locking mechanism, which is not covered in
this document.

The reason that we are covering these mechanisms in the performance
discussion is because usually integrity and performance vary inversely. Total
integrity may mean bad performance.

When you define VSAM data sets, you can specify how the data is to be
shared within a single system or among multiple systems that can have
access to your data. Before you define the level of sharing for a data set, you
must evaluate the consequences of reading incorrect data (a loss of read
integrity) and writing incorrect data (a loss of write integrity), situations that
can result when one or more of the data set's users do not adhere to
guidelines recommended for accessing shared data sets. On the other hand,
it is important to avoid the unnecessary use of certain serialization functions
which may cause a performance degradation.

Refer to 4.2, “Sharing VSAM data sets” on page 183, for more information.

Recommendations:

• If you are sure that no application updates or deletes the VSAM data set,
then do not use SHAREOPTIONS 4. It causes bufferpool refresh for direct
reads or writes. The bufferpool is useless and no I/Os are saved.

• If you are doing your own serialization use ENQ SHARE instead of ENQ
EXCLUSIVE for reads.

• In a cross-system environment, avoid the use of the RESERVE macro,
which locks the full 3390/3380 logical volume. Use instead the ENQ macro
for a GRS global ENQ resource.
Chapter 2. Performance 53

2.6.7 Initial load option
Initial load mode happens when you load your data sequentially in a VSAM
data set. This data set is already IDCAMS defined (cataloged and described
through the DSCB in VTOC) and high used RBA (HURBA) equal to zero. This
is the first step after the DEFINE or a when data set, defined with REUSE
attribute, is open with MACRF=RST (reset) in the ACB.

Initial load of your data set means either that this is the first time you are
writing its initial contents, or that you reusing the data set with new data. You
can do this through IDCAMS REPRO, IDCAMS IMPORT, or by writing your
own program.

Following are recommendations and remarks about initial loading of a VSAM
data set after it is defined.

There are two options where performance is concerned, SPEED and
RECOVERY.

• RECOVERY initially pre-formats (with Write format CCWs) each CA with
zeroed CIs (VSAM end-of-file mark). In a second step it fills this data
portion (with Write modified CCW), of the pre-formatted CA with real data.
So, the I/O response time for the load almost doubles. Read 2.7.5.1,
“Cache highlights” on page 113, to get more information on Write format
and Write modified.

The RECOVERY option is suppose to allow the restart of the load
operation from the last written record, however other difficulties such as
tape repositioning (in the input file) have inhibited customers use of it.

• SPEED does not pre-format. It issues Write format CCWs with real data.
As in the Write modified type of channel program (in RECOVERY), many
writes are assembled in the same channel program to improve CPU and
I/O usage. However free CIs are not written together with occupied CIs in
the same channel program.

Be aware that during load mode processing, you cannot share data sets.
Share options are overridden during load mode processing to (1 3). When a
shared data set is opened for create or reset processing, your program has
exclusive control of the data set within your operating system. If the data set
is shared between systems, VSAM does nothing to ensure that another
system is not accessing the data set concurrently. The user must ensure that
another system is not accessing the data set.
54 VSAM Demystified

There are other VSAM options affecting the initial load performance:

• Use system managed buffering (SMB) due to better buffer management.
Refer to 2.6.9.7, “System managed buffering (SMB)” on page 77.

• Use extended format; refer to 1.5, “Extended format data set” on page 18.

Recommendations:

• Never use the RECOVERY option.

• Use SMB.

• Use extended format.

• Any specific SHARE options assignment in a load is defaulted to (1 3)

2.6.7.1 Write checks
Due to the new RAID controllers, the write check option is useless and
introduces performance degradation.

Recommendations:

• Never use the write check option.

2.6.8 Region size

The key to reducing the number of I/O operations is to keep more data in
virtual storage. The recommendations given here go in that direction. So,
before you implement them, you should review the region size parameter to
avoid an S878 type of abend, as shown in the following VSAM message:

The portion of the user's private area within each virtual address space that is
available to the user's programs is called the user region (located from the
bottom to top of the private area). The region size is the amount of storage in
the user region available to the job, started task, or TSO/E user. Figure 15
shows the virtual storage layout. For a description of each area; refer to the
OS/390 MVS Initialization and Tuning Guide, SC28-1751.

IDC3351I ** VSAM CLOSE RETURN CODE IS 136

Not enough virtual storage was available in the program's
address space for a work area for Close
Chapter 2. Performance 55

Figure 15. Address space layout

You specify a job's region size by coding the REGION parameter in the JOB
or EXEC statement. The system rounds all region sizes to a 4K multiple.
Some installations use the IEFUSI exit to modify or limit the region size.

Following is an explanation about the need for region size; refer to Figure 15.
This explanation describes the private area below 16 MB. The same
considerations apply to the area above the 16 MB line.

• The size of the private area is determined by the difference in 16 MB
minus the common area below, rounded to a 1 MB boundary. The
rounding is because a segment table (which covers 1 MB of virtual
storage), cannot have one piece with common addresses and another
piece with private addresses.
56 VSAM Demystified

• Depending on the type (subpool number) of the GETMAIN, the virtual
addresses GETMAINed can be taken from top to bottom (for system
subpools like LSQA, SWA, 229, 230) or from bottom to top (subpools for
loading programs and user virtual work areas).

• Some programs issue a GETMAIN requiring more private virtual storage
(from bottom to top) than they really need. The surplus storage is used for
performance gains. The programs would sometimes abend because there
was no room for GETMAINs from top to bottom. To control abends and
excessive paging the concept of region was introduced.

• Jobs run out of virtual space and abend when:

- The REGION specified is greater that the available private area.

- A private area GETMAIN reaches the limit determined by the IEFUSI
exit (the default is the specified REGION plus 64k) even if there is
virtual free space available.

- A private area GETMAIN cannot be served because no contiguous
virtual free space exists. This means a collision between the
top-to-bottom and bottom-to-top subpools.

Table 2 shows how the JCL REGION parameter is interpreted and how much
virtual storage is available, below and above 16 MB, for each step of a job.

Do not hesitate to increase your job region size. We will show how good
buffering can reduce the number of I/Os, job elapsed time, CPU time and
device connect, and disconnect time. If your job is I/O bound, then by giving it
enough resources, it executes more quickly. That is good both for the user
and for total system performance.

Refer to 2.8, “VSAM and SmartBatch” on page 121, to see how this product
can help you to avoid virtual storage abends.

Table 2. Region JCL parameter

REGION value Region available below 16 MB Region available above 16 MB

0k > REGION < 16 MB Establishes the private area size
below

32 MB

16 MB > REGION =< 32M All private area below is available 32 MB

32 MB > REGION =< 2G All private area below is available Establishes the private area size
available above 16 MB

0k or 0M All private area below is available All private area above is available
Chapter 2. Performance 57

If your job is experiencing constraints in storage below 16 MB when VSAM
files are opened, you can relieve storage usage below 16 MB by specifying
that VSAM allocate the buffers and/or control blocks above 16 MB. For
details; refer to 2.6.9.6, “Locating VSAM buffers above 16 MB” on page 76.

2.6.9 Buffering options
Buffering in virtual storage is an important technique in VSAM in order to
improve performance. You have the possibility of using this technique through
the buffering options. Here we cover the aspects of buffering in virtual
storage.

A VSAM resource pool is a set of VSAM control blocks plus a buffer pool. A
buffer pool is a collection of same size I/O buffers plus control information
describing the occupancy of such buffers. The objective of a buffer pool is:

• To avoid I/O operations in random access due to control intervals hits.

• To synchronize differences in speed from I/O to processor during
sequential processing, and consequently to improve performance.

For more efficient use of virtual storage, buffer pools can be shared among
data sets using locally or globally shared buffer pools. There are four types of
resource pools, according to the technique used to manage them:

• Non-Shared Resource (NSR)
• Local Shared Resource (LSR)
• Global Shared Resource (GSR)
• Record Level Shared (RLS)

You will see details about each one in this chapter, except for RLS. The
exploiter of RLS is CICS. For details, refer to DFSMS/MVS Using Data Sets,
SC26-4922; and CICS and VSAM Record Level Sharing: Implementation
Guide, SG24-4766.

Buffers are acquired dynamically, and only when the data set is opened. The
amount of space for buffers is based on parameters in effect when the
program opens the data set.

One of the major sources for determining how much space should be
allocated in a buffer pool is the Access Control Block (ACB). The ACB is
created in the program to:

• Identify the data set to be opened.

• Specify the type of processing to be done with the data set.

• Specify the basic options.
58 VSAM Demystified

• Indicate whether user exit routines are to be used while the data set is
being processed.

The system obtains ACB information for VSAM data sets as follows:

• Information in DD statements overrides SMS data class information.

• The program’s ACB information is used.

• The catalog entry for the data set is used.

• For LSR buffering, the BUFND, BUFNI, BUFFERSPACE and STRNO
parameters do not apply and cannot be overridden by JCL. For details,
see 2.6.9.3, “Local Shared Resources (LSR)” on page 71.

Parameters that influence the buffer allocation are shown in Table 3.

You can see below how specifications in the MACRF, ACB’s parameter,
affects buffering and data set processing:

• Buffering management: NUB for management of I/O buffers to be done by
VSAM or UBF when management of I/O buffers is left up to the user, or a
VSAM exploiter as DB2. NUB is the default value.

• VSAM buffering technique to be used: NSR (default), LSR, GSR or RLS.

• The manner in which the records are intended to be accessed: Direct
(DIR), sequential (SEQ), skip sequential (SKP).

• Type of argument used to access records: By key (KEY option), by RBA
(ADR option), or access is to the entire contents of a control interval rather
than to an individual data record (CNV). KEY is the default.

• What kind of processing is done in the data set: Input (IN, default) or
output (OUT); this is just an intention.

• How writes are to be managed: defer writes (DFR) or not (NDF). For
details about deferring writes; refer to 2.6.9.5, “Deferring write requests”
on page 75.

• Using LSR, how VSAM deals with conflict for an exclusive control in
buffers: VSAM defers the request until the resource becomes available
(LEW, default) or VSAM returns the exclusive control return code X’14’ to
the application program (NLW). The application program is then able to
determine the next action.

• Insert record strategy: Split CIs and CAs at the insert point (SIS) or at the
midpoint (NIS, default) when doing direct PUTs.
Chapter 2. Performance 59

In MACRF, you code the types of access you intend to use during the
processing. They are used mainly for buffering management and at open
time. To process the data set, you use request parameter lists (RPL), where
you specify only the processing options appropriate to that particular request.

If you open a data set whose ACB includes MACRF=(SEQ,DIR), buffers are
allocated according to the rules for sequential processing, NSR buffering
management.

Table 3. Parameters affecting buffer allocation

2.6.9.1 How BUFFERSPACE and BUFSP affect buffering
The BUFFERSPACE value in the catalog entry for the data set is the
minimum amount of buffer space while the value assigned in BUFSP, in JCL
or ACB, is the maximum amount of buffer space. The BUFFERSPACE value
applies to the whole cluster. Additional buffer space can be assigned to any
data set by:

• Modifying the data set's BUFFERSPACE value

• Specifying a larger BUFSP value with the AMP parameter in the data set's
DD statement

If you do not specify BUFSP, the amount of virtual storage used for buffers is
the largest of these values:

• The amount specified in the catalog (BUFFERSPACE)

• The amount determined from BUFND and BUFNI

• The minimum storage required to process the data set with its specified
processing options

SOURCE PARAMETER

DD Statement AMP parameter:
BUFSP, BUFND, and BUFNI

SMS data class (ACDS) RECORD ACCESS BIAS

Program’s ACB MACRF=(IN|OUT, SEQ|SKP, DIR)

STRNO=n, BUFSP=n, BUFND=n,
BUFNI=n (1)

SHRPOOL=n (2)

The catalog entry for the data set BUFFERSPACE

Note: (1) Applies only to NSR.
(2) Only for LSR/GSR, connect the ACB to an existent resource pool
60 VSAM Demystified

The BUFSP value takes precedence over BUFNI and BUFND as follows:

• If the number of buffers specified in the BUFND and BUFNI
subparameters exceed the virtual storage specified in the BUFSP space,
the number of buffers is decreased to fit in the BUFSP space as follows:

- If the ACB indicates direct access only, first the number of data buffers
is decreased until it reaches the BUFSP value, but it never becomes
less than the minimum required. If the BUFSP value is not reached,
then the number of index buffers is decreased until BUFSP is reached.

- For sequential access, BUFNI is decreased to reach BUFSP up to the
minimum plus one. If not reached, BUFND is decreased. When the
minimum is reached, but BUFSP is not reached, than one buffer is
subtracted from the number of index buffers.

• If BUFSP specifies more space than is required by BUFND and BUFNI,
the number of buffers is increased to fill the BUFSP space as follows:

- For direct access only, additional index buffers are allocated.

- For sequential access, one additional index is allocated and as many
data buffers as possible are allocated.

If BUFSP is specified and the amount is smaller than the minimum amount of
storage required to process the data set, VSAM cannot open the data set.

Recommendation:

• Do not specify BUFSP. This avoids mistakes in calculation leading to
different results from those expected.

When a buffer's contents are written, using direct access, the buffer's space
is not released. The control interval remains in storage until overwritten with a
new control interval. If your program refers to that control interval, VSAM
does not have to reread it. VSAM checks to see if the desired control interval
is in storage. This is not valid for share options 4, where buffers used for
direct processing are refreshed for each request.

Buffer space is released when all data sets that are using the buffer pool are
closed. If an abend occurs before closing VSAM data sets, the buffers are not
flushed by VSAM or Recovery Termination Manager routines. It is left to the
application decision throughout the use of an (E)SPIE/(E)STAE routine to
close the data sets and consequently flush the buffers. For details about
ESTAE and ESPIE macros, refer to OS/390 MVS Programming: Authorized
Assembler Services Reference, Volume 2 (ENFREQ-IXGWRITE)),
GC28-1765.
Chapter 2. Performance 61

When processing a data set using a path, the number of needed buffers
increase, since buffers are needed for the alternate index, the base cluster,
and any alternate indexes in the upgrade set.

When a base cluster is opened for processing with its alternate index, the
BUFSP, BUFND, BUFNI, and STRNO parameters apply only to the path's
alternate index. The minimum number of buffers are allocated to the base
cluster unless the cluster's BUFFERSPACE value (specified in the DEFINE
command) or BSTRNO value (specified in the ACB macro) allows for more
buffers. VSAM assumes direct processing, and extra buffers are allocated
between data and index components accordingly. For more details, refer to
DFSMS/MVS Using Data Sets, SC26-4922.

Choosing the adequate VSAM buffer length and buffering technique is the
key to reducing the number of I/Os and reducing the I/O response time (Tr).
More buffers (either data or index) than necessary might cause excessive
paging or excessive internal processing. There is an optimum point at which
more buffers do not decrease the job elapsed time and device connect time.
You can see that in Table 4 on page 66. You should attempt to have data
available just before it is to be used. If data is read into buffers too far ahead
of its use in the program, it can be paged out.

The default for the number of VSAM allocation buffers is as follows:

• For the index component: BUFNI=STRNO

• For the data buffers: BUFND=STRNO+1

One of the data buffers (BUFND) is used only for formatting CAs and splitting
CIs and CAs. Only data buffers are needed for ESDS, RRDS, or LDS.

This default is also the minimum number of buffers required by VSAM.

We will now look at VSAM buffering techniques.

2.6.9.2 Non-shared resources (NSR)
NSR is the default VSAM buffering technique. It has the following
characteristics:

• The buffers are not shared among VSAM data sets.

• The buffers are located in the private area.

• It is suited for sequential processing, because the buffers are managed via
a sequential algorithm:
62 VSAM Demystified

- For sequential processing, there is look-ahead, and CIs in the buffer
pool are not managed by LRU (meaning after use, they are strong
candidates to leave the buffer pool).

- For direct processing, there is no look-ahead, but CIs are not managed
by LRU.

• It is used by high level languages.

• The resource pool (buffer pool plus control blocks) is built automatically by
OPEN.

• The data insert buffer is used only for CI splits.

• Each string has its own buffer for the index component. Only the additional
index buffers provided are:

- Used to cache index set records

- Shared among strings

• Each string has its own buffer for the data component. If additional data
buffers are provided, they are for:

- Sequential READS and WRITES

- CA splits

- Spanned records

• Dynamically extends the number of strings as they are needed by
concurrent requests for the ACB.

• For subtask sharing, when a CI is not available for the type of task
processing requested, VSAM under NSR buffering has a proper way of
managing the contention. For details, refer to 2.6.6, “Share options” on
page 53.

Figure 16 shows how buffers are searched.
Chapter 2. Performance 63

Figure 16. NSR buffering

NSR with sequential access
NSR is best used for applications that use sequential or skip sequential as
their primary access mode.

For the first loading of the buffers, VSAM uses the string’s assigned buffer
plus all additional buffers to a maximum of CIs/CA, since I/Os are scheduled
on CA boundaries. When another string, at the same time, needs buffers,
VSAM uses its assigned buffer and the remaining buffers to a maximum of
CIs/CA, and so forth. So, having more buffers than CI/CA plus one is useful
only when having more than one string. When a string finishes using its
buffers, additional buffers are available to other strings.

For overlap between CPU and I/O:

• For writes, once one-half of the buffers are filled by the application with
records, an I/O operation is scheduled for the other half.

Additional index buffers (BUFNI-STRNO)
used to cache index set records
shared among strings

Additional data buffers (BUFND-(STRNO+1))
sequential READS/WRITES
CA splits
spanned records

VSAM NSR

User ACB

MACRF=
(NSR,NUB)

STRNO=2

PLH

BUFND=4

Insert Buffer

Buffer 2

Buffer 1

Buffer 3

BUFNI=3

Buffer 1

Buffer 2

Buffer 3

PLH
64 VSAM Demystified

• For reads, once one-half of the buffers is being processed by the
application, an I/O operation is scheduled for the other half.

This continues until a CA boundary is encountered and the application must
wait until the last I/O to the CA is done before proceeding to the next CA. The
I/O operations are always scheduled within CA boundaries.

When you are accessing data sequentially, you can increase performance by
increasing the number of data buffers. When there are multiple data buffers,
VSAM uses a read-ahead function to read the next data control intervals into
buffers as buffers become available as described above.

Table 4 shows results of tests varying the number of buffers. Note that:

• As more buffers are used, the number of Execution Channel Program
(EXCPs) is reduced. This means there are fewer I/O interrupts. That is
why SRB time consumption drops so much compared with TCB time. For a
discussion about what is a VSAM EXCP in numerical values, refer to
Appendix B, “Miscellaneous performance items” on page 223. In general
with VSAM, the number of EXCPs is equal to the number of SSCH
instructions (and not the number of transferred CIs or physical blocks).

• The TCB time drops due to decrease in I/O preparation. After the optimum
point, the TCB time increase due to excessive buffering management
processing.

We recommend you read section B.1, “Our laboratory” on page 223, for a
better understanding of the test results shown in this book.

For sequential PUT processing, VSAM NSR does not immediately write the
updated CI from the buffer unless a CI split is required. VSAM saves I/O
operations by deferring writes. For details about defer write, refer to 2.6.9.5,
“Deferring write requests” on page 75.

With SHAREOPTIONS 4, buffers are refreshed at each request. Also, the
read-ahead (a look-ahead synonym) function has no effect and defer write is
not used. Therefore, for SHAREOPTIONS 4, keeping data buffers at a
minimum can actually improve performance.

The POINT macro does not cause read-ahead processing unless RPL
OPTCD=SEQ is specified. POINT positions the data set for subsequent
sequential retrieval.
Chapter 2. Performance 65

Having only one index I/O buffer does not hinder performance, because
VSAM gets to the next CI by using the horizontal pointers in sequence set
records rather than the vertical pointers in the index set. Extra index buffers
have little effect during sequential processing. You can see that in Table 4.

As buffers are used to balance the ability of the application to process data
with the capacity of the storage device to deliver the data to the application,
the amount of data buffers needed depends on how many records per data CI
the data set has. In a data CI with many records, the number of data buffers
is saturated before a data CI with few records. Saturated means you do not
get better performance by increasing the number of buffers.

By specifying enough data buffers, you can access the same amount of data
per I/O operation with small data CIs as with large data CIs.

Table 4 contains the results from our lab tests. Remember that, in our lab
tests, the data set record processing is minimal (very I/O-bound). Also notice
that we did not run in a controlled environment, so the elapsed time value can
vary according to priority and system workload.

Table 4. NSR — read sequential varying the number of buffers — STRNO=1

As you can see, buffering can save I/O connect time. Refer to 2.7.6, “I/O
service time (connect) for VSAM files” on page 117, to understand why.

If you experience a performance problem waiting for input from the device,
you should specify more data buffers to improve your job's run time. More
data buffers allow you to do more read-ahead processing.

Data
buffers

Index
Buffers

EXCPs Device
connect
time

SRB
time

TCB
time

Elapsed
Time

Default=2 Default=1 37735 28 0.95 2.7 51

10 1 7641 15.8 0.28 1.6 25

30 1 2549 13.4 0.15 1.4 19

50 1 1623 12.86 0.13 1.4 16

50 2 1623 12.85 0.13 1.4 16

90 1 927 12.5 0.11 1.5 16

181 1 466 12.4 0.1 1.7 14

Note: all times are in seconds
66 VSAM Demystified

For mixed processing situations (sequential and direct), you can improve
performance in the following ways:

• Increase the number of index component buffers to the number of index
levels to help direct access. Table 6 on page 70 shows how the number of
index component buffers can improve performance for direct access.

• For sequential access, increase the number of data component buffers.
Table 4 on page 66 shows how this can improve performance, based on
tests in our lab. The best number of data component buffers varies
according to the application processing done between each read to the
data set. This means how fast the application requires new records to
process. If the bottleneck is always the I/O operation, it is useless to
increase the size of the buffer pool, as explained in 2.7.5.1, “Cache
highlights” on page 113. The advantages of a large buffer pool only show
up when there are fluctuations in the I/O rates in the application and in the
I/O subsystem.

If your data set is SMS managed and has extended format, you do not need
to worry about how many buffers to specify for the index or data component,
you can take advantage of system managed buffering; for details, refer to
2.6.9.7, “System managed buffering (SMB)” on page 77.

Buffering in NSR initial load mode
Initial load mode occurs when you load your data sequentially in a VSAM
data set with a High Used RBA (HURBA) equal to zero. This is the first step
after the DEFINE; or when a data set, defined with the REUSE attribute, is
open with MACRF=RST (reset) in the ACB.

In this case, the RECOVERY or SPEED defined attributes of the data set are
used.

When RECOVERY, the default option, is specified, all CAs are pre-formatted.
All previous information from the direct access storage area are cleared, and
end-of-file indicators are written.

With the SPEED attribute, data CAs are not performed, and an end-of-file
indicator is written only after the last record is loaded. With SPEED you get
better performance for initial load mode. With extended format data sets and
SPEED, you can get much better performance using SMB, writing each CA
with one I/O request. For details, refer to 2.6.9.7, “System managed buffering
(SMB)” on page 77. Also refer to 2.6.7, “Initial load option” on page 54, to see
our recommendations about using RECOVERY or SPEED.
Chapter 2. Performance 67

Table 5 shows the results of loading an empty data set, with 450,002 records,
using IDCAMS REPRO. The best result is obtained when:

Data buffers = 181 = CIs/CA + 1

Index Buffers = 3 (the number of index levels after data set loading)

For initial load mode processing, you get the best results using:

Index buffers = 3

Data buffers = CIs/CA + 1

Table 5. NSR - Initial Load mode varying the number of buffers

NSR with direct access
NSR is not intended for direct access. However, many of your applications
may use NSR for direct processing because it is simple. In this topic we will
look at how NSR works for direct access. Remember that today you have
solutions available to avoid direct processing without changing your code:
system managed buffering, batch local share resources, and data
acceleration in SmartBatch. We will cover their functions here.

In direct access, records are randomly accessed, and VSAM NSR does not
use read-ahead buffers. Many types of data buffers do not increase
performance, because VSAM reads only one data CI for each access. For
output processing (PUT for update), VSAM defers write only if OPTCD=NSP
is specified in the RPL macro; otherwise, VSAM immediately writes the
updated CI.

With the NSR buffering technique, data buffers are not shared among strings.
Each string is associated with one request parameter list (RPL). For example,
when an application uses an RPL to issue a direct GET for a record with a
key of 1234 using NSR, VSAM manages buffers as follows:

Data
buffers

Index
buffers

EXCPs Device
connect
time

CPU Time Elapsed
time

Default Default 39375 42.18 5.49 84

90 Default 2801 20.5 3.1 24

181 Default 2338 20.2 3.25 26

181 3 2109 20.1 3.16 25

360 Default 2338 20.32 3.53 41

All times shown are in seconds
68 VSAM Demystified

1. VSAM locates the correct CI.

2. VSAM then reads the data CI into storage and gives the user the
requested record.

3. If the user then issues another direct GET for a record with a key of 6789,
which is in a different CI from record 1234, the same data buffer gets used
for this request, and the CI containing 6789 overlays the CI containing
1234.

4. If the user then issues another direct GET for a record with key 1235
(which is in the same CI as 1234), that CI must be read in again because
the intervening GET for 6789 causes the previous buffer contents to be
lost.

This problem cannot be solved by using multiple strings. If, for example, the
requests for 1234, 6789, and 1235 use three different RPLs, both CIs will be
in storage when the request for 1235 occurs, but VSAM will look only in the
buffer assigned to the string related to RPL requesting 1235 and will not look
in another string's buffers to satisfy the request. The CI will be read in again
anyway.

These NSR characteristics lead to performance complaints in cases where
the processing is random, but the same CI is requested multiple times with
intervening requests to other CIs (revisiting).

When the number of I/O buffers provided for index records is greater than the
number of strings:

• One buffer is used for the highest-level index record.

• Additional buffers are used, as required, for other index set index records.

• Buffers are shared among strings, as shown in Figure 16 on page 64.

With direct access, you should provide at least enough index buffers to be
equal to the value of the STRNO parameter of the ACB plus one if you want
VSAM to keep the highest-level index record always resident.

For a KSDS or VRRDS, you can increase performance for direct processing
by increasing the number of index buffers. Unused index buffers do not
degrade performance. Direct processing always requires a top-down search
through the index.

For optimum performance, the number of index buffers should at least equal
the number of high-level index set CIs plus one per string to contain the entire
high-level index set and one sequence set CI per string in virtual storage.
Table 6 shows how adding index buffers improves performance. The elapsed
Chapter 2. Performance 69

time can vary according to the system workload. Note that additional index
buffers will not be used for more than one sequence set buffer per string
unless shared resource pools are used.

VSAM reads index buffers one at a time. Index buffers are loaded when the
index is referred to. When many index buffers are provided, index buffers are
not reused until a requested index CI is not in storage.

VSAM keeps as many index set records as the buffer space allows in virtual
storage. Ideally, the index would be small enough to allow the entire index set
to remain in virtual storage. Because the characteristics of the data set
cannot allow a small index, you should be aware of how index I/O buffers are
used so you can determine how many to provide.

Many data buffers do not increase performance, because only one data
buffer is used for each access, as you can see in Table 6. The elapsed time
can vary according to the system workload.

Table 6. NSR buffering with direct access — STRNO=1

If your job is having performance problems randomly accessing VSAM data
sets and your program application uses NSR buffering, you can improve
performance with no changes in your applications, as follows:

• If your data set is SMS managed, has extended format, and your
installation has DFSMS V1R4 or later, you can use system managed
buffering. For details, refer to 2.6.9.7, “System managed buffering (SMB)”
on page 77.

• For batch applications, you can use BLSR; for details, refer to 2.6.9.8,
“Batch local shared resources (BLSR)” on page 81.

Data Buffers Index Buffers EXCPs CPU time
(sec)

Elapsed time
(min)

Default 1 199000 13.62 4

30 1 199000 13.60 4

Default 3 118000 8.46 2.4

Default 4 99376 7.26 2.0

Default 5 99376 7.27 2.0

Default 10 99376 7.28 2.0

Default 50 99376 7.42 2.0
70 VSAM Demystified

Refer to A.3, “Sample program to extract information from SMF record type
64” on page 214 for information that can help you find that jobs which are
candidates to use BSLR. Remember that BLSR should be used only for direct
access. Consider the use of SMB, where you can get better results.

Recommendations:

With NSR:

• For sequential processing, use SMB to get an optimum buffering, or:

BUFNI = Number of levels

BUFND = Number of CI/CA plus one

Additional data buffers, when STRNO higher than one

• For direct access, use SMB or BLSR to convert to LSR and get an
optimum buffering, or:

BUFNI = STRNO plus number of levels

BUFND = Let the default value (STRNO plus one)

2.6.9.3 Local Shared Resources (LSR)
The buffers in a LSR pool:

• Are explicitly constructed via BLDVRP macro, before the OPEN for the
first data set that will use it.

• Are shared among VSAM data sets accessed by tasks in the same
address space.

• Are located in the private area and ESO hiperspace (if specified in
BLDVRP macro)

• Are replaced based on the least recently used (LRU) algorithm.

• Have no look-ahead for sequential processing.

Buffering is also affected by the following:

• For subtask sharing, when a CI is not available for the type of task
processing requested, VSAM under LSR and GSR buffering has a proper
way of managing the contention. For details, refer to 2.6.6, “Share options”
on page 53.

• Programs using LSR can invalidate BP contents through MRKBFR macro
and forced them to be written immediately through WRTBFR macro.

LSR relieves virtual storage constraint and reduces I/O for applications that
access the same data multiple times. This technique is best used for truly
Chapter 2. Performance 71

random access or with multiple references to the same data. Subsequent
access to data does not have to access DASD.

With LSR and GSR, the number and size of buffers are specified in BLDVRP
macro (see Figure 17) and are not overridden by ACB or JCL. The buffer pool
is identified by a number and a data set is connected to it through the ACB
macro, where the buffer pool ID is specified. After all data sets using a
resource pool are closed, the resource pool can be delete issuing the DLVRP
(delete VSAM resource pool) macro. For more details about macros, refer to
DFSMS/MVS Macro Instructions for Data Sets, SC26-4913.

Figure 17. VSAM shared resources (LSR/GSR)

Online transaction program (OLTP) applications like CICS and IMS are the
biggest users of LSR shared resources because they typically need to have
hundreds of data sets open in one address space at any given time. Having

VSAM Shared ResourcesVSAM Shared Resources
(LSR/GSR)(LSR/GSR)

Buffers and I/O related control blocks
associated with a pool (BLDVRP)
Multiple data sets share pooled resources

Buffers and I/O related
control blocks

INDEX

MACRF=
(NSR,NUB)

User ACB
INDEX

Data

MACRF=
(NSR,NUB)

User ACB

Data

User ACB
INDEX

Data

MACRF=
(NSR,NUB)
72 VSAM Demystified

an individual buffer pool for each data set would be a waste of virtual storage.
With CICS and IMS, the BLDVRP is issued by them, not directly by the user
application. Information for building the shared buffer pool is specified in the
product FCT table. Refer to the product manuals.

With LSR and GSR, writes can be deferred until VSAM needs a buffer to
satisfy a GET request. Deferring writes saves I/O requests in cases where
subsequent requests can be satisfied by the data already in the buffer pool.
For more details, refer to 2.6.9.5, “Deferring write requests” on page 75.

The search in the buffer pool is not affected by the pool size once the search
is by hashing, so there is no overhead. Also, with LSR buffering, your
application can use hiperspace as a second level of buffering. For details,
refer to “Using buffers in hiperspace” on page 74.

If you intend to build an application using LSR buffering techniques:

• Note that LSR is suited for direct access; for sequential access, use NSR.

• Build resource pools before any open to the data sets that will use them.

• Build a separate resource pool for indexes to avoid index data being
flushed by data being read.

• Use defer write if possible.

For details how to build an LSR pool, refer to DFSMS/MVS Using Data Sets,
SC26-4922.

LSR with direct access
LSR buffering is suited for direct access. If your applications use NSR
buffering and direct access, and you are having performance problems, you
can take advantage of LSR buffering. Refer to 2.6.9.7, “System managed
buffering (SMB)” on page 77 and 2.6.9.8, “Batch local shared resources
(BLSR)” on page 81.

LSR with sequential access
The LSR buffer management technique is for random access, not sequential
processing. If you are relying on sequential read-ahead for good performance
LSR buffering could degrade, rather than improve performance. LSR does
not do read-ahead. Your sequential request is not read in more than one data
CI per I/O operation. You should use NSR buffering, where VSAM can read
up to a CA's worth of data CIs in a single I/O, conditions permitting. For
details about NSR, refer to “NSR with sequential access” on page 64.
Chapter 2. Performance 73

Recommendations:

If you intend for your batch application to use the LSR buffering technique:

1. Write the application using the default buffering NSR. It is easier and you
can use a high level language, such as COBOL.

2. Use SMB to convert to LSR when processing or BLSR if there is no SMS.

Using buffers in hiperspace
VSAM LSR can use a second level of buffering, that is, the hiperspace
expanded storage only (HS ESO). In the BLDVRP macro, the requester can
ask for a certain amount of the buffer pool (BP) in the address space and
another in an HS ESO. At OPEN time, both are allocated.

The reasons for the HS ESO buffer pool are:

• It saves virtual storage addresses in the address space.

• If you have 2 GB of central storage (the architectural limit) and plenty of
expanded storage, HS ESO is a good way to use the expanded storage.

VSAM use HS ESO in a store-through mode. That is, all the buffers in the HS
ESO have the most current CI content. Then, if real storage manager (RSM)
steals a page from the expanded storage frame backing up the HS ESO CI,
integrity is not affected.

However, HS ESO buffering performance is not as good when compared to
an address space. The reason is that the CPU cannot process a page in
expanded storage. The page must be moved to central storage in order to be
processed. In VSAM terms, if a CI is not in the address space buffer but
rather in an HS ESO buffer, the following operations must be executed:

1. Move a CI from the address space buffer to the HS ESO buffer to make
room.

2. Bring the referred CI from the hiperspace ESO buffer to the address space
buffer.

If you need 500 MB of buffer pool space, is better to have all of it in an
address space (if you are not short of virtual or central storage) than 250 MB
in the address space and 250 MB in the hiperspace ESO.

For LSR, hiperspace buffers are created with the resource pool, using the
BLDVRSP macro, where you specify the size and number of hiperspaces
buffers.The size of the hiperspace buffer must be a multiple of 4096 and must
match the CI size of the data component. The default is zero; this means, do
not use hiperspace.
74 VSAM Demystified

If your application uses NSR buffering with direct access, you can use SMB to
convert to LSR. You can also ask for hiperspace buffers; for details, refer to
2.6.9.7, “System managed buffering (SMB)” on page 77.

2.6.9.4 Global Shared Resources (GSR)
GSR is similar to LSR buffering technique. The GSR characteristics that differ
from LSR are:

• The buffer pool is shared among VSAM data sets accessed by tasks in
multiple address spaces.

• Buffers are located in CSA.

• Buffers cannot use hiperspace.

• The separate index resource pools are not supported for GSR.

With these differences in mind, refer to 2.6.9.3, “Local Shared Resources
(LSR)” on page 71 for details on how GSR buffering technique works.

2.6.9.5 Deferring write requests
Use defer write (if possible). With defer write, VSAM uses the buffer pool in a
store in mode. That is, the updates are not propagated immediately to DASD.

The performance advantages of deferring writes are these:

• If the same record is updated n times and is then written asynchronously
to DASD, you save n-1 I/O operations. It is clear that, if there are no
further updates, there will be no saves.

• The application doing the write does not wait for the I/O operation.

The negative aspect of deferring writes is that VSAM does not have a log (at
present). If the system fails before the buffer destage, you lose some updates
in your file. So, is up to you to make the decision based on the type of data
you are processing.

Defer write option is only valid for LSR/GSR. The defer write option is
bypassed in LSR/GSR if SHAREOPTIONS 4 is specified. Refer to 4.2,
“Sharing VSAM data sets” on page 183.

When NSR defer write is used, with the exception of SHAREOPTIONS 4, the
buffers are immediately refreshed.

You specify that writes are to be deferred by coding MACRF=DFR in the
ACB, along with MACRF=LSR or GSR:

ACB MACRF=({LSR|GSR},{DFR| NDF},...),...
Chapter 2. Performance 75

You can also specify defer write through the use of SmartBatch; refer to 2.8,
“VSAM and SmartBatch” on page 121.

2.6.9.6 Locating VSAM buffers above 16 MB
The default VSAM allocation for a resource pool is below 16 MB. The location
of the buffers and I/O control blocks can be controlled in two ways using the
RMODE31 parameter:

1. In an assembler application program:

- For NSR buffering, in the ACB of the data set

- For LSR buffering, in BLDVRP macro

2. In the JCL, via AMP parameter

The values you may specify for RMODE31 are:

• ALL is used to allocate I/O relate control blocks and buffers above 16 MB.

• BUFF is used only to allocate buffers above 16 MB.

• CB is used only for I/O relate control blocks above 16 MB.

• NONE is the default. VSAM allocates I/O related control blocks and
buffers below 16 MB.

With the flexibility of JCL, you can avoid the work of changing an existing
application. But be aware that programs with AMODE=24 can abend with
S0C4 when locate mode is used and RMODE31=BUFF is specified.

Locate mode is used when OPTCD=LOC is specified in the RPL, and
indicates to VSAM to return to the application the address of the record,
which is located in the buffer. Using locate mode, programs addressing
24 bits cannot access data above 16 MB (addressing 31 bits).

There is also a move mode, where VSAM moves your logical record from the
buffer to an area you specify.

COBOL for OS/390 always:

• Uses MVE mode; VSAM moves the record to an area whose address is
indicated in the RPL, built by COBOL.

• Requires VSAM buffers above 16 MB.

You can relieve the storage constraint below 16 MB for application programs
using VSAM data sets by specifying RMODE31 in the AMP parameter. You
can increase the number of buffers with no effect on virtual storage below
76 VSAM Demystified

16 MB. Do not forget to specify enough private area above. Refer to 2.6.8,
“Region size” on page 55.

Recommendations:

• Use VSAM buffers above 16 MB.

2.6.9.7 System managed buffering (SMB)
SMB was introduced in DFSMS V1R4 and enables VSAM to determine the
optimum number of index and data buffers, as well as the type of buffer
management (LSR or NSR).

SMB does not perform miracles; it just allocates the optimum number of data
and index buffers based on the access used. Remember that the region size
should support the increase in virtual storage.

Performance improvements can be dramatic, particularly where defaults for
buffering are used and a switch from NSR processing to LSR is made (for
direct processing). This can be seen in Table 7 on page 79.

SMB is available under the following conditions:

• The data set must be in extended format. To be in extended format, the
data set must be system managed (SMS) and use a data class defined
with DSNTYPE=EXT. For details about extended format; refer to “Use the
ECKD extended format:” on page 117.

• In the application program, ACB must be NSR and MACRF cannot
contain:

- ICI — Improved control interval processing
- AIX — Processing the data set through the alternate index of the path

specified in the DDname
- UBF — Management of I/O buffers left up to the VSAM user, as in DB2

When the conditions above are not satisfied, the job does not abend, the
SMB services are not used and no messages are issued.

You can invoke SMB services through one of the following methods:

1. Using a data class defined with RECORD_ACCESS_BIAS=SYSTEM

2. Specifying ACCBIAS in the AMP parameter of JCL.

The order of precedence for specifying values are shown in the SOURCE
column in Table 3 on page 60.
Chapter 2. Performance 77

The AMP JCL parameter can be used to specify access bias with a
subparameter ACCBIAS, where you specify the type of buffering
management technique. You can specify one of the following values:

• DO — SMB optimizes buffers management to direct access. SMB
changes the buffering management to LSR and allocates the adequate
number of buffers for direct processing.

• DW — To indicate to SMB that the processing is mixed direct and
sequential, but with dominance of direct access. So, more index buffers
are allocated to support direct processing but some buffers will be
reserved for data to help any sequential processing that might occur. The
buffering management technique is changed to LSR.

• SO — Indicates to SMB to optimize buffer allocations for sequential
processing. More data buffers are allocated to support sequential access.

• SW — Specifies mixed processing, but with dominance of sequential
access. SMB optimizes buffer handling for sequential processing
allocating more data buffers, but buffers will be reserved for index to help
direct access. SMB is faster than NSR for sequential process, as indicated
in Table 9 on page 80.

• SYSTEM — Let the system determine the buffering technique. Based on
the ACB’s MACRF and storage class specifications one of the four
techniques specified above will be used.

• USER — Bypass SMB. This is the default if you code no specification for
the ACCBIAS subparameter. This default is not used when the data class
specifies RECORD_ACCESS_BIAS.

For direct optimization (DO), SMB converts NSR buffering to LSR. In this
case, you can use the following AMP parameters to tell the LSR buffer
manager how to handle the processing of the buffers:

• SMBVSP — Specifies the amount of virtual storage to obtain for buffers
when opening the data set. Used to override the default buffer space to be
obtained, which is calculated assuming that 20% of the data will account
for 80% of the accesses. The buffer space acquired is split across two
LSR pools: one for the index and one for the data. The specification can
be done in either of two formats:

- SMBVSP=nnK

- SMBVSP=nnM

• SMBHWT — Used to allocate hiperspace buffers based on a multiple of
the number of address space virtual buffers that have been allocated. It
can be an integer from 0 to 99. The value specified is not a direct multiple
78 VSAM Demystified

of the number of virtual buffers that are allocated to the resource pool, but
act as a weighting factor for the number of hiperspace buffers to be
established. The hiperspace size buffer will be a multiple of 4k. These
buffers may be allocated for the base data component of the sphere. If the
CI size of the data component is not a multiple of 4k, both virtual space
and hiperspace is wasted. Before specifying this parameter, see details
about the use of hiperspace in “Using buffers in hiperspace” on page 74.
The default is 0 and means that hiperspace is not used.

• SMBDFR — Allows the user to specify whether writing the data from a
buffer to DASD can be deferred until the buffer is required for another
request or the data set is closed. A CLOSE macro invoked with TYPE=T
(temporary, does not need an OPEN to restart processing) option does not
write the buffers to DASD when LSR processing is used for direct
optimization. The format is:

SMBDFR=Y or N

Y is the default for SHAREOPTIONS (1,3) and (2,3)

N is the default for SHAREOPTIONS (3,3), (4,3) and (x,4)

Table 7 shows the benefits of using SMB, compared with the use of BLSR or
buffering default. When we ran our test, we had 61 CA splits. Some CPU time
was due to managing these splits; allocating extents, and data set catalog
entry update. For considerations on CA and CI splits, refer to 2.6.4, “Free
space” on page 50.

If you specify RECORD_ACCESS_BIAS=SYSTEM in the data class, you do
not have to worry about what kind of access is done, or bother with JCL
modifications. You can also see that for extended format data sets, you can
get performance enhancements, even with default buffering. In our lab tests
(refer to Table 7), the number of EXCPs, CPU time, and connect time is less
than non-extended format data sets. For details on why this happens; refer to
2.7.7.2, “Use of extended format” on page 121 and 2.7.7.2, “Use of extended
format” on page 121.

Table 7. Direct access: benefits of using SMB — updates and insertions

Ext format Buffering EXCPs connect
time (sec)

CPU
time(sec)

Elapsed
time (min)

No Default 772057 549 52.54 16.2

Yes Default 771265 541 45.67 19.3

No BLSR 293960 255 24.83 6.8

Yes SMB 79741 75 11.04 2.5
Chapter 2. Performance 79

When SYSTEM is specified, the parameters used to determine how buffers
are allocated and managed are:

• ACB’s MACRF values of SEQ, DIR, and SKP

• The storage class values for BIAS and MSR

Table 8 shows how ACB’s MACRF and storage class BIAS parameters affect
the buffer allocation and management when SYSTEM is specified.

Table 8. Some effects of ACB’s MACRF and storage class BIAS parameters

The advantage of using SYSTEM is that you do not need to be concerned
about what kind of access is done. Table 9 shows the results when loading
our laboratory data set using default buffering and SMB. You can see, the
results are the same using sequential optimization (SO) or SYSTEM. The
advantage of SYSTEM is that all you need to do is specify in the data class.
For details about our lab; refer to B.1.1, “General lab description” on
page 223.

Table 9. Initial load mode comparing SMB with no-SMB buffering

Gain using SMB (%) 90 86 79 85

ACB MACRF Parameters Storage class BIAS

SEQ DIR Both None

MACRF=DIR DW DO DO DO

MACRF=SEQ (default) SO SW SO SO

MACRF=(SEQ,SKP) SO SW SW SW

MACRF=SKP DW DW DW DW

MACRF=(DIR,SEQ) or
(DIR,SKP) or (DIR,SEQ,SKP)

SW DW DW DW

Note: DO=Direct Optimized; DW=Direct Weighted; SO=Sequential Optimized;
SW = Sequential Weighted

Extended
format

Buffering EXCPs Connect
time

CPU time Elapsed
time

No NSR - Default 39375 42.18 5.49 84

Yes ACCBIAS=SO 2341 21.5 2.7 27

Ext format Buffering EXCPs connect
time (sec)

CPU
time(sec)

Elapsed
time (min)
80 VSAM Demystified

SMB message IEC161I 001(8,36)
When processing a VSAM data set using SMB, you can receive the message
IEC161I 001(8,36)-087. It is issued by the BLDVRP macro and indicates that
there was not enough virtual storage to satisfy the request done by SMB.
SMB gets the available storage and processing goes on. To get optimum
SMB buffering, you should provide enough virtual storage. Refer to 2.6.8,
“Region size” on page 55 and how you can relieve the use of storage below
16 MB by specifying that VSAM allocates buffers above16 MB. Refer to
2.6.9.6, “Locating VSAM buffers above 16 MB” on page 76.

Also refer to 2.8, “VSAM and SmartBatch” on page 121, to learn how you can
dynamically define your buffer pool through the SmartBatch.

2.6.9.8 Batch local shared resources (BLSR)
BLSR is a subsystem that provides advantages in an application using VSAM
NSR buffering techniques to switch to LSR without changing the application
source code or link-editing the application again. Only a JCL change is
required.

Your application performance will improve using BLSR when direct access is
used and the same CI is referenced more than once in the processing. Using
the BLSR subsystem with sequential access could degrade performance
rather than improve it. For information about how LSR works, refer to 2.6.9.3,
“Local Shared Resources (LSR)” on page 71.

For mixed processing (some direct, some sequential), you may benefit from
using BLSR. If the amount of data to be processed sequentially is not very
large, you can compensate for the lack of read-ahead by using a large data
CI size.

BLSR supports the VSAM data set types KSDS, ESDS, RRDS and VRRDS.
Using BSLR, you can force VSAM buffers and control blocks to be located
above 16 MB without having to use hiperspace. You can also use hiperspace,
and you can restrict its use with RACF or an equivalent security software.

The BLSR subsystem has the following restrictions:

Yes ACCBIAS=SYSTEM 2341 21.5 2.7 28

Gain using SMB (%) 94 49 51 67

Note: All times are shown in seconds

Extended
format

Buffering EXCPs Connect
time

CPU time Elapsed
time
Chapter 2. Performance 81

• The ACB cannot be above 16 megabytes. Otherwise, the system fails the
OPEN request with error message IEC190I.

• If the application closes and then reopens the ACB without refreshing the
DDNAME, the request is bypassed, and the data set is opened using the
same options as the last time it was opened.

That is, if the data set was previously opened for LSR processing, then it
is reopened for LSR. Similarly, if the data set was not eligible for LSR
processing the first time, then it is reopened for NSR processing, even if
LSR is now applicable.

High-level languages refresh the DDNAME for each open. Consequently, the
subsystem is always called for the following:

• COBOL/VS programs using the ISAM interface to access VSAM files.

• PL/1 programs written for ISAM accessing VSAM files.

• Other programs using the RDJFCB macro to try to identify the file type, for
example, IDCAMS.

Before using BSLR, the subsystem must be installed. Contact your
installation system programmer, or refer to the manual MVS Batch Local
Shared Resources, GC28-1469.

When the subsystem is active, to invoke its services, add the SUBSYS
parameter to the JCL. The following example illustrates how to do this.

If, for example, the application opens the following data set for NSR
processing:

//VSAMDD DD DISP=SHR,DSN=VSAMDSN

You can convert to the BLSR subsystem as follows:

1. Change the DDNAME on the previous JCL command statement, for
example, from VSAMDD to NEWBUFF:

//NEWBUFF DD DISP=SHR,DSN=VSAMDSN

2. Add the following DD statement, where the SUBSYS subsystem-name
subparameter is BLSR and the SUBSYS DDNAME subparameter is the
DD name selected in step 1:

//VSAMDD DD SUBSYS=(BLSR,'DDNAME=NEWBUFF')

When SUBSYS is specified in JCL, the job’s INITIATOR issues the
IEFSSREQ macro, invoking BLSR subsystem services, passing the
information specified in the SUBSYS parameter.
82 VSAM Demystified

Then, the BSLR subsystem:

1. Includes an EXIT to call BLSR at OPEN.

2. Dynamically allocates the data set to the correct DDNAME (NEWBUFF in the
example).

When the application opens the VSAMDD ACB, the BLSR subsystem completes
the conversion to LSR processing.

The following system parameters are not allowed with the SUBSYS
parameter:

*, AMP, BURST, CHARS, COPIES, DATA, DDNAME, DYNAM, FLASH, MODIFY, QNAME,
SPACE, SYSOUT.

You must nullify any of these parameters if they are specified on a DD
statement you are overriding.

You specify the SUBSYS parameter as:

SUBSYS=(subsys-name,'DDNAME=value','subparm1=value',....,'subparmn=value')

Where:

• subsys-name is the name given to BLSR subsystem, usually, BLSR

• DDNAME value is the name of the DDNAME to be open by the application
program.

The following subparameters are allowed on the BLSR SUBSYS parameter:
BUFND, BUFNI, HBUFND, HBUFNI, RMODE31, STRNO, DEFERW,
SHRPOOL, BUFSD, BUFSI and MSG. For the meaning, default and the use
of them; refer to the manual MVS Batch Local Shared Resources,
GC28-1469.

BLSR can be used with SMS and non-SMS-managed data sets.

If your data set is SMS-managed and is in extended format, you will get better
performance using SMB. For details, refer to 2.6.9.7, “System managed
buffering (SMB)” on page 77.

BLSR can also be implemented by SmartBatch; refer to 2.8, “VSAM and
SmartBatch” on page 121 for more information.

Recommendations:

• If possible, use SMB, the results are better, as you can see in Table 7 on
page 79.
Chapter 2. Performance 83

• If possible, locate the buffers above 16 MB.

2.6.10 Data compression
To compress means to store data in a format that requires less space than
the original data. There are quite a few methods (algorithms) to compress
data, such as the following:

• Character-based methods: Huffman, Run-length encoding, Ziv-Lempel

• Bit-level methods: Image data compression, IDRC (tape controllers)

Some of these methods use the concept of a dictionary, which is a mapping
from one vocabulary to another. There are two types:

• Compression dictionary

• Expansion dictionary

The same method may use many dictionaries.

S/390 uses the Ziv-Lempel (ZL) method in software and hardware options.

ZL-based schemes work by entering phrases into a dictionary and then, when
a repeat occurrence of that particular phrase is found, outputting the
dictionary index instead of the phrase. Several compression algorithms are
based on this principle. They differ mainly in the manner in which they
manage the dictionary, and all of them tend to perform much better in
decoding than in encoding. S/390 compression uses the ZL1 version of the
ZL implementation, and the RVA family of products uses ZL2.

2.6.10.1 Where to use compression
Compression can be executed in the processor or outbound in an I/O
controller (for example, tape). With CPU compression, you save:

• I/O buffer pool space
• Channel cycles
• Controller cache space
• Controller internal data path cycles
• Media space (disk and tape)
• Transmission line cycles (for TP)

The advantages of compressing in the controller are to save:

• Controller cache space
• Controller internal data path cycles
• Media space (disk and tape)
• CPU cycles
84 VSAM Demystified

2.6.10.2 OS/390 compression interface
The interface to data compression in OS/390 is through the Compression
Management Facility (CMF), which consists of two parts.

Compression service activation
Compression service activation covers checking and setting up the required
compression environment.

• It determines if the Compression Call instruction is available; if not, the
compression is done by software.It verifies if the SYS1.DBBLIB data set is
available. It contains dictionary building blocks (DBB) used for
compression.

Compression management services (CMS)
Compression management services covers the actual process a data set
goes through when compression is requested. CMS provides and carries out
the following services used by VSAM.

Candidate data set verification
Candidate data set verification has the following requirements:

• KSDS organization only. Only data is compressed, indexes are not
compressed (AIX are not compressed).

• SMS functions must be active and the data set must be SMS managed
and in extended format.

• Data class assigned has to specify the DSNTYPE=EXT with a required
COMPACTION=Y (blank defaults to N).

• Have a primary allocation of at least 5 MB (data component only) due to
the amount of sampling needed to develop a dictionary token. If no
secondary allocation is specified, then the primary allocation must be at
least 8 MB.

• Have a minimum record length of 40 bytes (not including key length).

• IMBED, CI Mode processing and key range are not allowed.

• BCS catalog, system data sets, and temporary data sets cannot be
compressed because extended format is not supported.

For VSAM extended format and compression restrictions and
incompatibilities see DFSMS/MVS Using Data Sets, SC26-4922-01.
Chapter 2. Performance 85

Dictionary selection
There are two forms of compression: generic and tailored (refer to Figure 18
on page 87.)

• Generic compression:

This involves the sampling and interrogation of the compression eligible
data set by CMF. Next, a sample from the data set is taken, at load time,
and compared to the DBBs for similar content and compression efficiency.
Up to 64 KB of the data set can be sampled and written before the data set
starts to be compressed. The first time a compressed format data set is
written to disk, the first bytes are written in non-compressed form.

Because the dictionary is assembled using DBBs during the sampling and
interrogation, the dictionary does not exist when the first bytes of the data
set are written. Once the dictionary is built, the data can use this dictionary
to compress the rest of the data set. Information about the mix of DBBs
selected during the sampling and interrogation process is kept in the
catalog. This information enables the decompression of the data set when
required but does not require a dictionary to be stored with the data set.

• Tailored compression:

Tailored compression introduces a new form of compression for sequential
extended format data sets (not for VSAM data sets). With tailored
compression, the system attempts to derive a compression dictionary that
is tailored specifically to the initial data written to a data set. Once a
tailored dictionary is derived, it is imbedded in the compressed data set.
This technique is expected to provide improved compression ratios,
thereby reducing DASD usage and channel traffic.

Because the dictionary is tailored to the user data, significantly more data
is sampled than was required by generic compression. The process of
sampling the data and building the dictionary during creation of a new data
set takes more CPU cycles and is, therefore, most noticeable when
compressing small data sets. For larger data sets, the cost of sampling is
amortized significantly. Reuse of a tailored compressed data set saves the
cost of sampling and dictionary creation.

An installation has the option of either using the new tailored compression
or continuing to use generic DBB-based compression first introduced with
DFSMS/MVS V1R2. Tailored compression allows for more types of data to
be compressed, for example, where non-English languages are used.
86 VSAM Demystified

Because the original generic dictionary was developed with standard
American-English scripts, files containing sequences of characters that do
not appear in the American scripts do not compress very well. The tailored
dictionary avoids this problem, as it is generated dynamically from the
data itself, for each data set.

Dynamically generating a tailored dictionary from the data itself should
make tailored compression more useful to the non-English-speaking
world. Tailored compression support does not apply to VSAM KSDSs,
which can continue to be compressed with generic DBB dictionary
compression.

VSAM KSDSs can only use generic compression.

Figure 18. CMS dictionary selection

Compression Management Services

Write
Compressed

DBBs

Sample
Interrogate
Compare

Build

Noncompressed
Data

Data
Class
Chapter 2. Performance 87

2.6.10.3 Forms of candidate data sets
A compression-eligible data set can exist in one of three forms,
depending on the moment:

• Dictionary selection: The data set is eligible, but its makeup is yet
to be determined. The dictionary tokens are compared with the data
set contents during interrogation and sampling. Interrogation maps
bytes into alpha, numeric, upper- or lower-case, and sampling
evaluates DBB compression efficiency.

• Mated: The data set is mated with the appropriate dictionary; this
concludes the sampling and interrogation processes.

• Rejected: A suitable dictionary match was not found during
sampling and interrogation, so compression is bypassed, or for a
sequential data set, the data set was closed before a token could be
selected. Note that the data set is in compressed format.

There are some types of data sets that are not suitable for ZL
compression, resulting in rejection, such as these:

• Small data sets.

• Data sets in which the pattern of the data does not produce a good
compression rate, such as image data.

• Small records. Compression is performed on a logical record basis.
When logical records are very short, the cost of additional work may
become excessive compared to the reduction in size that
compression achieves.

2.6.10.4 Data compression and decompression
Data compression and decompression are invoked whenever read and/or
write or get and/or put is done on a mated data set. A mated data set is one
that has acquired a suitable dictionary token through successful interrogation
and sampling processes. In other words, suitable building blocks have been
found and selected from the DBB distribution library, and their combination
constitutes the dictionary token associated with the data set and held in the
catalog entry as well. Compression and decompression of a mated data set
use the dictionary built from the dictionary token associated with the data set
entry in the extended format cell of the catalog.

The dictionary is customized to the data set through the dictionary selection
process. However, the dictionary is not stored with the data. Only the token
information is stored, because the dictionary is a table dynamically built in
storage from the token information that enables the compression and
decompression of a data set when it is opened.
88 VSAM Demystified

Using this approach, DFSMS/MVS retains responsibility for dictionary
management and shields the user and application from the physical
representation of compressed data on disk.

2.6.10.5 Compression concepts
Following are some basic concepts regarding compression:

• Import into an empty data set does not propagate extended format and
compression information.

• When data is compressed, the length of a stored record may change after
an update without any logical record length change.

• Locate mode processing is allowed but requires a larger number of
internal work areas to process.

• ISMF adds a %user data reduction (compression factor) field in data set
application.

• IDCAMS REPRO copies data sets without decompressing:

- If the target data set is eligible for compression, and
- If the target device is a like device, or CI sizes are equal for VSAM

• Otherwise, REPRO decompress the data when reading and optionally
compresses the data when writing.

• Our SMF sample report shows the compression factor.

• LISTCAT lists the compression related information.

• IEHLIST indicates that the data set is compressed.

• DFSMSdss can be used for:

- Logical dump; this does not change format from compressed to
non-compressed or vice versa; and includes cataloging information
with dump.

- Logical restore; this does not change format from non-compressed to
compressed.

- Logical copy; this never changes the format from non-compressed to
compressed.

- DFSMShsm avoids double compression.

2.6.10.6 VSAM compression
VSAM compression is done transparently to the application, through the data
class (DC) parameter in SMS data sets. This DC assigned to the data set has
to specify the following DSNTYPE=EXT with a required COMPACTION=Y
(blank defaults to N). The following screen pictures the ISMF list of the DC:
Chapter 2. Performance 89

VSAM compression only applies to KSDS in extended format. All the fields to
the left of the key in the logical record are not compressed. In your next data
model, you can define the key field with offset equal to zero.

Compression affects the catalog, VTOC, and SMF information about VSAM
data sets. Refer to 2.6.10.8, “Compression information sources” on page 91
for information on how to get this data.

2.6.10.7 Compression performance
The relative CPU compression cost depends on:

• Dictionary size:

Usually, you do not have much control over this.

• Ratio of reads to writes of compressed records:

Ziv-Lempel expands faster (less CPU cycles) than compresses. This
means that it is better suited for data sets with a high read-to-write ratio.

Table 10 shows the amount of processing per compressed read or write
operation that we found in our lab environment.

Table 10. Comparing compression

Type of access Compression EXCPs Device
connect
time (sec)

Step
elapsed
time (sec)

Initial load No 2341 21.5 28

Initial load Yes 396 3.6 20

Direct access No 79,741 75 11.04

Direct access Yes 8278 7.1 12

DATACLAS EXTENDED MEDIA
NAME DATA SET NAME TYPE ADDRESSABILITY COMPACTION TYPE
--(2)--- -------(26)------- -----(27)----- ---(28)--- -(29)-
DCSMB EXTENDED REQUIRED NO ---- ------
DCSTRIPE EXTENDED REQUIRED NO ---- ------
DCXXXX EXTENDED REQUIRED NO ---- ------
DIRECT ------------------ NO ---- ------
ECCST ------------------ NO YES MEDIA2
EHPCT ------------------ NO YES MEDIA3
90 VSAM Demystified

Recommendations:

• Do not use compression for data sets with low read-to-write ratio (less
than 60%).

• Make key offset equal to zero.

2.6.10.8 Compression information sources
Compressed data sets have specific information about the compression
process in different sources.

• Catalogs:

ICF catalogs are not eligible for compression, but are enhanced to contain
additional information about compressed format data sets in the extended
format cell of the catalog entry. The extended format cell is part of the
VSAM volume data set (VVDS) component of the ICF catalog.

The extended format cell holds:

- Number of stripes (STRIPE-COUNT)

- Compression flags (COMP-FORMAT)

- Physical block size

- Non-compressed user data set size in bytes (USER-DATA-SIZE)

- Compressed user data set size in bytes (COMP-USER-DATA-SIZE)

- Active dictionary token (ACT-DIC-TOKEN — Active Dictionary Token or
NULL)

- Whether user data sizes are valid (SIZES-VALID)

- Compression characteristic record.

• SMF:

Compression information in the type 14 and 15 records is updated when
CLOSE is performed on a sequential compressed format data set.
Information on the dictionary token selected and the compressed and
non-compressed data set size is added to the SMF type 14 and 15
records.

New fields have also been added to SMF type 64 records for VSAM
compression. These new fields record the size of the data before and after
compression, flags for extended format and compression, and dictionary
tokens used for compression. You can find more detailed information on
the SMF record layout in the MVS/ESA SP V5 System Management
Facilities (SMF), GC28-1457.
Chapter 2. Performance 91

This information is also maintained in the extended format cell in the
catalog.

• VTOC:

There is now a compression indicator, DS1COMPR, and an extended
format data set indicator, DS1STRP, in the VTOC. Because a compressed
format data set must be an extended format data set, both indicators are
on for compressed format data sets:

VTOC Format 1 DSCB

DS1STRP — extended format VSAM data set. Contained within the
DS1SMSFG offset x’ 4 E’

DS1COMPR — Compressed data set. Contained within the DS1FLAG1
offset x’ 3 D’

2.6.11 Data striping
Usually, in a multi-extent, multi-volume VSAM data set processed in
sequential mode, processing does not present any type of parallelism for I/O
operations among the volumes. This means that when an I/O operation is
executed for an extent in a volume, no other I/O activity from the same task is
scheduled to the other volumes. In a situation where I/O is the major
bottleneck, and there are available resources in the channel subsystem and
controllers, it is a waste of these resources.

Data striping addresses this performance problem by imposing two
modifications to the traditional data organization:

• The records are not placed in key ranges along the volumes; instead they
are organized in stripes.

• Parallel I/O operations are scheduled to sequential stripes in different
volumes.

By striping data, the tracks in the case of SAM, and the control intervals (CIs)
for VSAM, are spread across multiple devices. This format allows a single
application request for records in multiple tracks and CIs to be satisfied by
concurrent I/O requests to multiple volumes.

The result is improved performance by achieving data transfer into the
application at a rate greater than any single I/O path. The scheduling of I/O to
multiple devices in order to satisfy a single application request will be referred
to as an I/O packet.
92 VSAM Demystified

2.6.11.1 VSAM data striping
Data striping support for VSAM is initially released with DFSMS 2.10. Support
is provided for all VSAM organization, including KSDS, ESDS, RRDS,
VRRDS, and LDS. Support for LDS was made generally available via PTF to
DFSMS/MVS V1.5.

Following are the characteristics of a VSAM striped data set:

• Striping is done by CI, as opposed to track for SAM.

• A stripe is associated with a single volume or a set of volumes.

• Only the data component of a base cluster may be striped.

• A data set may have up to a maximum of 16 stripes.

• A stripe on a single volume has a maximum of 123 extents per stripe.

• A multi-layered stripe has a maximum of 255 extents per stripe.

• The following features are supported:

- Data in extended addressability (>4GB):

- Data in compressed format

- Partial release

• A data set is system-managed.

• A data set is allocated in extended format.

• A data set may be assigned either GUARANTEED SPACE or
NON-GUARANTEED SPACE.

• For guaranteed space, the number of stripes is equal to the number of
volumes (VOLUME COUNT) you specify in the data class or the
VOLUMES parameter in JCL, up to a maximum of 16 stripes. The JCL
specification overrides the data class.

For non-guaranteed space, SMS determines the number of stripes to use
based on the value of the SUSTAINED DATA RATE(SDR) in the storage
class.

Figure 19 is an example of a four-stripe VSAM data set.
Chapter 2. Performance 93

Figure 19. Striped VSAM data set

Layering and striped data
VSAM supports multi-layering. A layer in a striped environment is defined as
the relationship of the volumes that make up the total number of stripes. That
is, those volumes that participate as part of an I/O packet.

Once the stripe extends to a new volume, and the I/O packet changes, this
constitutes another layer. The Sequential Access Method (SAM) is restricted
to extending only to the current stripe volume and does not support the
concept of multi-layering.

Figure 20 shows an example of the concept of layering with a three-stripe
data set.

Example: Data CI size - 4k, Physical Blocksize - 4k

4k blocks per 3390 track - 12, Stripe count - 4
CYL (n n)

C
O
N
T
R
O
L

A
R
E
A

Stripe/VOL 1 Stripe/VOL 2 Stripe/VOL 3 Stripe/VOL 4

1st track

2nd track

3rd track

4th track

CI
0
4
9

CI
0
5
3

CI
0
5
7

CI
0
9
3

thru
CI
0
5
0

CI
0
5
4

CI
0
5
8

CI
0
9
4

thru
CI
0
5
1

CI
0
5
5

CI
0
5
9

CI
0
9
5

thru
CI
0
5
2

CI
0
5
6

CI
0
6
0

CI
0
9
6

thru

CI
0
0
1

CI
0
0
5

CI
0
0
9

CI
0
4
5

thru
CI
0
0
2

CI
0
0
6

CI
0
1
0

CI
0
4
6

thru
CI
0
0
3

CI
0
0
7

CI
0
1
1

CI
0
4
7

thru
CI
0
0
4

CI
0
0
8

CI
0
1
2

CI
0
4
8

thru

CI
1
4
5

CI
1
4
9

CI
1
5
3

CI
1
8
9

thru
CI
1
4
6

CI
1
5
0

CI
1
5
4

CI
1
9
0

thru
CI
1
4
7

CI
1
5
1

CI
1
5
5

CI
1
9
1

thru
CI
1
4
8

CI
1
5
2

CI
1
5
6

CI
1
9
2

thru

CI
0
9
7

CI
1
0
1

CI
1
0
5

CI
1
4
1

thru
CI
0
9
8

CI
1
0
2

CI
1
0
6

CI
1
4
2

thru
CI
0
9
9

CI
1
0
3

CI
1
0
7

CI
1
4
3

thru
CI
1
0
0

CI
1
0
4

CI
1
0
8

CI
1
4
4

thru
94 VSAM Demystified

Figure 20. Layering in VSAM data set striping

Implementing VSAM data striping
In order to create a striped VSAM data set, you must do the following:

• Define an SMS-managed VSAM data set in extended format.

You should specify Data Set Name Type in the data class as EXT
Required. Data Set Name Type may be set to EXT Preferred but the data
set is not defined as striped if it is not allocated in extended format.

• Specify an SDR value in the storage class for either guaranteed or
non-guaranteed space. This will tell SMS that you want to implement
striping.

• For guaranteed space, specify the VOLUME COUNT in the data class or
the VOLUMES parameter in JCL. The JCL specification overrides the data
class.

If you do not specify either the volume count or the volume serial numbers,
you only get a single stripe.

Refer to 2.6.1.1, “Guaranteed Space” on page 43 for additional
information on guaranteed space.

Primary space allocation
Secondary space allocation

Stripe 1 Stripe 2 Stripe 3Layer 1: VOLA VOLB VOLC

Layer 2: VOLA VOLD VOLC
Stripe 1 - extends on same volume
Stripe 2 - extends to VOLD
Stripe 3 - extends on same volume

Layer 3: VOLE VOLF VOLG
Stripe 1 - extends to VOLE
Stripe 2 - extends to VOLF
Stripe 3 - extends to VOLG

Stripe 1 - extends on same volume
Stripe 2 - extends on same volume
Stripe 3 - extends on same volume

LSS1

VOLA VOLB VOLC

VOLD

VOLE VOLF VOLG
Chapter 2. Performance 95

• For non-guaranteed space, just specify the SDR value in the storage
class. SMS computes the number of stripes based on approximately
4MB/sec rate. The volume count is ignored.

As a simple example: if you specified a SDR of 17MB/sec, your data set
will be defined with 4 stripes.

Examples of defining striped data sets
In this example, we create a striped VSAM data set using guaranteed space,
and a specified volume count of 4. The data class name is KEYEDEXG, the
storage class is STRIPE.

//STRIPED JOB 'DEF STRIPED-EF VSAM DS',MSGCLASS=X,NOTIFY=&SYSUID
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DELETE DAWN.KSDSEXG
DEFINE CLUSTER -

(NAME(DAWN.KSDSEXG) -
DATACLASS(KEYEDEXG) -
STORAGECLASS(STRIPE))

LISTC ALL ENTRIES(DAWN.KSDSEXG)
/*

Following is the content of the KEYEDEXG data class:

CDS Name . . . : SYS1.SMS.SCDS
Data Class Name : KEYEDEXG

Description : USING GUARANTEED SPACE

Recorg : KS
Recfm:
Lrecl. : 300
Keylen : 8
Keyoff : 0
Space Avgrec : K

Avg Value : 300
Primary : 600
Secondary : 100
Directory :

Retpd Or Expdt :
Volume Count : 4
Add'l Volume Amount . :

Imbed :
Replicate :
CIsize Data : 4096
% Freespace CI : 10
96 VSAM Demystified

CA : 10
Shareoptions Xregion . . :

Xsystem . . :
Compaction :
Media Interchange
Media Type :
Recording Technology :

Data Set Name Type . . . : EXTENDED
If Extended : REQUIRED
Extended Addressability : NO
Record Access Bias . . : USER

Reuse : NO
Initial Load : RECOVERY
Spanned / Nonspanned . . :
BWO :
Log :
Logstream Id :
Space Constraint Relief . : NO
Reduce Space Up To (%) :

Following is the content of the STRIPE storage class.

CDS Name : SYS1.SMS.SCDS
Storage Class Name : STRIPE
Description : TO BE USED FOR STRIPING TEST

Performance Objectives
Direct Millisecond Response . . . :
Direct Bias :
Sequential Millisecond Response . :
Sequential Bias :
Initial Access Response Seconds . :
Sustained Data Rate (MB/sec) . . . : 17

Availability : NOPREF
Accessibility : NOPREF
Backup :
Versioning :

Guaranteed Space : YES
Guaranteed Synchronous Write . . : NO
Cache Set Name :
CF Direct Weight :
CF Sequential Weight :

This is the job output. The data set is explicitly defined with 4 stripes with the
specified volume count of 4:

DEFINE CLUSTER -
(NAME(DAWN.KSDSEXG) -
Chapter 2. Performance 97

DATACLASS(KEYEDEXG) -
STORAGECLASS(STRIPE))

IGD17070I DATA SET DAWN.KSDSEXG ALLOCATED
SUCCESSFULLY WITH 4 STRIPE(S).
IDC0508I DATA ALLOCATION STATUS FOR VOLUME SBOX30 IS 0
IDC0508I DATA ALLOCATION STATUS FOR VOLUME MHLV14 IS 0
IDC0508I DATA ALLOCATION STATUS FOR VOLUME SBOX31 IS 0
IDC0508I DATA ALLOCATION STATUS FOR VOLUME SBOX28 IS 0
IDC0509I INDEX ALLOCATION STATUS FOR VOLUME SBOX30 IS 0
IDC0509I INDEX ALLOCATION STATUS FOR VOLUME MHLV14 IS 0
IDC0509I INDEX ALLOCATION STATUS FOR VOLUME SBOX31 IS 0
IDC0509I INDEX ALLOCATION STATUS FOR VOLUME SBOX28 IS 0
IDC0512I NAME GENERATED-(D) DAWN.KSDSEXG.DATA
IDC0512I NAME GENERATED-(I) DAWN.KSDSEXG.INDEX
IDC0181I STORAGECLASS USED IS STRIPE
IDC0181I MANAGEMENTCLASS USED IS MCDB22
IDC0181I DATACLASS USED IS KEYEDEXG
IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0

In this example, we create a striped VSAM data set using non-guaranteed
space and SDR 17MB/sec:

//STRIPED JOB 'DEF STRIPED-EF VSAM DS',MSGCLASS=X,NOTIFY=&SYSUID
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DELETE DAWN.KSDSEXT
DEFINE CLUSTER -

(NAME(DAWN.KSDSEXT) -
DATACLASS(KEYEDEXT) -
STORAGECLASS(STRIPE))

LISTC ALL ENTRIES(DAWN.KSDSEXT)
/*

Following is the content of KEYEDEXT data class:

CDS Name . . . : SYS1.SMS.SCDS
Data Class Name : KEYEDEXT

Description : TO BE USED FOR STRIPING TEST

Recorg : KS
Recfm :
Lrecl : 300
Keylen : 8
Keyoff : 0
Space Avgrec : K

Avg Value : 300
98 VSAM Demystified

Primary : 600
Secondary : 100
Directory :

Retpd Or Expdt :
Volume Count : 8
Add'l Volume Amount . :

Imbed :
Replicate :
CIsize Data : 4096
% Freespace CI : 10

CA : 10
Shareoptions Xregion . . :

Xsystem . . :
Compaction :
Media Interchange
Media Type :
Recording Technology :

Data Set Name Type . . . : EXTENDED
If Extended : REQUIRED
Extended Addressability : NO
Record Access Bias . . : USER

Reuse : NO
Initial Load : RECOVERY
Spanned / Nonspanned . . :
BWO :
Log :
Logstream Id :
Space Constraint Relief . : NO
Reduce Space Up To (%) :

Following is the content of the STRIPE storage class using non-guaranteed
space:

CDS Name : SYS1.SMS.SCDS
Storage Class Name : STRIPE
Description : TO BE USED FOR STRIPING TEST

Performance Objectives
Direct Millisecond Response . . . :
Direct Bias :
Sequential Millisecond Response . :
Sequential Bias :
Initial Access Response Seconds . :
Sustained Data Rate (MB/sec) . . . : 17

Availability : NOPREF
Accessibility : NOPREF
Backup :
Chapter 2. Performance 99

Versioning :
Guaranteed Space : NO
Guaranteed Synchronous Write . . : NO
Cache Set Name :
CF Direct Weight :
CF Sequential Weight :

This is the job output of our second example. The data set is defined with
5 stripes. SMS allocated on 5 volumes out of the 8 volumes defined in the
storage group. Only the data component is striped:

DEFINE CLUSTER -
(NAME(DAWN.KSDSEXT) -
DATACLASS(KEYEDEXT) -
STORAGECLASS(STRIPE))

IGD17070I DATA SET DAWN.KSDSEXT ALLOCATED
SUCCESSFULLY WITH 5 STRIPE(S).
IDC0508I DATA ALLOCATION STATUS FOR VOLUME SBOX31 IS 0
IDC0508I DATA ALLOCATION STATUS FOR VOLUME SBOX28 IS 0
IDC0508I DATA ALLOCATION STATUS FOR VOLUME SBOX29 IS 0
IDC0508I DATA ALLOCATION STATUS FOR VOLUME SBOX30 IS 0
IDC0508I DATA ALLOCATION STATUS FOR VOLUME MHLV13 IS 0
IDC0508I DATA ALLOCATION STATUS FOR VOLUME * IS 0
IDC0508I DATA ALLOCATION STATUS FOR VOLUME * IS 0
IDC0508I DATA ALLOCATION STATUS FOR VOLUME * IS 0
IDC0509I INDEX ALLOCATION STATUS FOR VOLUME SBOX31 IS 0
IDC0509I INDEX ALLOCATION STATUS FOR VOLUME * IS 0
IDC0509I INDEX ALLOCATION STATUS FOR VOLUME * IS 0
IDC0509I INDEX ALLOCATION STATUS FOR VOLUME * IS 0
IDC0509I INDEX ALLOCATION STATUS FOR VOLUME * IS 0
IDC0509I INDEX ALLOCATION STATUS FOR VOLUME * IS 0
IDC0509I INDEX ALLOCATION STATUS FOR VOLUME * IS 0
IDC0509I INDEX ALLOCATION STATUS FOR VOLUME * IS 0
IDCAMS SYSTEM SERVICES
IDC0512I NAME GENERATED-(D) DAWN.KSDSEXT.DATA
IDC0512I NAME GENERATED-(I) DAWN.KSDSEXT.INDEX
IDC0181I STORAGECLASS USED IS STRIPE
IDC0181I MANAGEMENTCLASS USED IS MCDB22
IDC0181I DATACLASS USED IS KEYEDEXT
IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0

After loading the data set, the LISTCAT output will show the HURBA only on
the first volume. For the other volumes, HURBA=0:

DATA ------- DAWN.KSDSEXG.DATA
IN-CAT---MCAT.SANDBOX.R9.VSBOX11
HISTORY
DATASET-OWNER-----(NULL) CREATION--------2000.104
RELEASE----------------2 EXPIRATION------0000.000
100 VSAM Demystified

ACCOUNT-INFO-----------------------------------(NULL)
PROTECTION-PSWD-----(NULL) RACF----------------(NO)
ASSOCIATIONS
CLUSTER--DAWN.KSDSEXG
ATTRIBUTES

KEYLEN-----------------8 AVGLRECL-------------300 BUFSPACE-----------10240
CISIZE--------------4096

RKP--------------------0 MAXLRECL-------------300 EXCPEXIT----------(NULL)
CI/CA----------------192

STRIPE-COUNT-----------4
SHROPTNS(1,3) SPEED UNIQUE NOERASE INDEXED NOWRITECHK

NOIMBED NOREPLICAT
UNORDERED NOREUSE NONSPANNED EXTENDED
STATISTICS

REC-TOTAL---------450002 SPLITS-CI--------------0 EXCPS----------------435
REC-DELETED------------0 SPLITS-CA--------------0 EXTENTS----------------4
REC-INSERTED-----------0 FREESPACE-%CI---------10 SYSTEM-TIMESTAMP:

IDCAMS SYSTEM SERVICES TIME: 13:17:48
04/13/00 PAGE 2
REC-UPDATED------------0 FREESPACE-%CA---------10 X'B3E38064F2AD17C3'
REC-RETRIEVED----------0 FREESPC---------98054144
ALLOCATION
SPACE-TYPE---------TRACK HI-A-RBA-------251658240
SPACE-PRI-----------1280 HI-U-RBA-------170655744
SPACE-SEC--------------0
VOLUME

VOLSER------------SBOX28 PHYREC-SIZE---------4096 HI-A-RBA-------251658240
EXTENT-NUMBER----------1

DEVTYPE------X'3010200F' PHYRECS/TRK-----------12 HI-U-RBA-------170655744
EXTENT-TYPE--------X'40'
VOLFLAG------------PRIME TRACKS/CA--------------4
STRIPE-NUMBER----------1
EXTENTS:

LOW-CCHH-----X'003B0000' LOW-RBA----------------0 TRACKS--------------1280
HIGH-CCHH----X'00900004' HIGH-RBA-------251658239
VOLUME

VOLSER------------SBOX29 PHYREC-SIZE---------4096 HI-A-RBA-------251658240
EXTENT-NUMBER----------1

DEVTYPE------X'3010200F' PHYRECS/TRK-----------12 HI-U-RBA---------------0
EXTENT-TYPE--------X'40'
VOLFLAG------------PRIME TRACKS/CA--------------4
STRIPE-NUMBER----------2
EXTENTS:

LOW-CCHH-----X'003B000A' LOW-RBA----------------0 TRACKS--------------1280
HIGH-CCHH----X'0090000E' HIGH-RBA-------251658239
VOLUME

VOLSER------------SBOX31 PHYREC-SIZE---------4096 HI-A-RBA-------251658240
EXTENT-NUMBER----------1

DEVTYPE------X'3010200F' PHYRECS/TRK-----------12 HI-U-RBA---------------0
EXTENT-TYPE--------X'40'
VOLFLAG------------PRIME TRACKS/CA--------------4
STRIPE-NUMBER----------3
EXTENTS:

LOW-CCHH-----X'000A000A' LOW-RBA----------------0 TRACKS--------------1280
HIGH-CCHH----X'005F000E' HIGH-RBA-------251658239
VOLUME

VOLSER------------MHLV15 PHYREC-SIZE---------4096 HI-A-RBA-------251658240
EXTENT-NUMBER----------1

DEVTYPE------X'3010200F' PHYRECS/TRK-----------12 HI-U-RBA---------------0
EXTENT-TYPE--------X'40'
VOLFLAG------------PRIME TRACKS/CA--------------4
STRIPE-NUMBER----------4
EXTENTS:
Chapter 2. Performance 101

LOW-CCHH-----X'00090000' LOW-RBA----------------0 TRACKS--------------1280
HIGH-CCHH----X'005E0004' HIGH-RBA-------251658239

CA size considerations
CA size calculations is affected by striping. Normally, the CA size is the lesser
of the primary or secondary value and must not exceed 15 tracks if allocation
is in tracks; or a cylinder, if allocation is in cylinders.

In striped data sets, the CA size amount must be a multiple of the number of
stripes. That is, a CA cannot end in the middle of a stripe.

To meet this restriction, the CA size may have to be rounded to the next
integral of the stripe count. Also, since the maximum stripe count is 16, a CA
size of 16 tracks must be allowed to accommodate 16 stripes. Note that CA
size maximum is increased to 16 tracks from previous 1 cylinder (15 tracks)
allocation.

For striped data sets, all computations for CA size are performed using the
equivalent amount of tracks. For example:

• A data set has 7 stripes.

• The equivalent allocation in tracks is (45 30), so 15 tracks are used.

• 15 tracks rounded to the next integral of stripe count is 21. But 21 is
greater than maximum of 16 tracks, so CA size is rounded down to 14
tracks.

Performance considerations
Consider the following when using VSAM striped data sets:

• The I/O for a striped data set is as long as the longest I/O in the stripe.

• If you implement n stripes, it does not mean that your aggregate data rate
will be n times bigger.

• The I/O post to the application is done when all the I/O to the stripes ends.
Likewise, if an I/O error occurs in one of the stripes/volumes, the I/O
operation ends with an error.

• For striped data sets, you should use SMB to determine the number of
buffers, or you should allocate a larger value for the BUFND, depending
on your application.

If you are not using SMB, specify a BUFND value that is at least equal to
the number of stripes. SMS needs at least one buffer for each
stripe/volume accessed by the I/O request. Refer to 2.6.9, “Buffering
options” on page 58 for more information.

Using the default BUFND eliminates some of the benefits of striping.
102 VSAM Demystified

• Using LSR in VSAM striped data set is not rejected. However, you may not
see a performance improvement in the way that NSR does.

• The way VSAM striping is done now, you may get better performance than
what you specified in the SDR in the storage class. As we have
mentioned, SMS computes the number of stripes based on a 4MB/sec
rate. But in reality, your DASD performs better.

• For KSDS, it has been experienced that after the fourth stripe, the
processing improvement curve flattens. You may not get performance
improvements if you define more than 4 stripes.

• Striping does not give a great deal of benefit for data sets accessed
directly. However, these data sets will be accessed sequentially during
backup, report generating, and so on. Therefore, you may wish to
consider striping all your VSAM data sets.

Recommendations:

• For striped data sets, you should use SMB to determine the number of
buffers or allocate a larger value for the BUFND, depending on your
application. Using the default BUFND eliminates some of the benefits of
striping.

• All the volumes that contain the stripes should have the same speed.

• As a ROT for VSAM, do not go beyond 4 stripes — if you do, you will
overload the processor.

• Define striping only for sequential processing.

2.7 VSAM performance management

Here, we cover all the aspects that may affect the VSAM I/O delay time,
Tw(IO); and the I/O service time, Ts(IO). Also, because VSAM CPU service
time, Ts(CPU), which is used by VSAM, has some effect on the total response
time, we offer suggestions on how to decrease it.

2.7.1 Performance scenario using RMF reports
In VSAM performance management, we use an approach in steps that are
based on RMF or an equivalent product, assuming you are in WLM goal
mode:

1. Look for your most important service class period that is not reaching the
goal in the RMF monitor III SYSSUM report:
Chapter 2. Performance 103

HTTPS1 is a service class associated with the transactions of an HHTP
scalable server. They run under in dispatchable units under enclaves. Its
importance (I) is one (the maximum importance), its goal is average
response time of 0.80 seconds., its actual response time is 1.6 seconds
and the performance index is 2.0 meaning 100% out of the target.

2. Let us look at the Enclave report to see where the problem is:

In this report, you see two enclaves belonging to the service class HTTPS1
suffering 88% and 89% of delay, respectively. Some of the delays are
measured by WLM in order to be minimized, depending on the performance
index of the service class. They are:

• CPU
• I/O (if you are in WLM I/O Management option)
• Storage
• Delay for HTTP Queue Server

In addition to these delays, the RMF Monitor III tracks other delays, such as:

------- Goals versus Actuals -------- Trans --Avg. Resp. Time-
Exec Vel --- Response Time --- Perf Ended WAIT EXECUT ACTUAL

Name T I Goal Act ---Goal--- --Actual-- Indx Rate Time Time Time

BATCH W 100 0.000 0.000 0.000 0.000
BATCHLOW S 5 25 100 0.25 0.000 0.000 0.000 0.000
HTTPW1 W 100 0.000 0.000 0.000 0.000
HTTPS1 S 1 25 0.80 AVG 1.60 AVG 2.0 44.4 0.000 1.600 1.600
OMVS W 97 0.030 0.001 0.711 0.712
OMVS S 98 0.030 0.001 0.711 0.712

1 2 0.0 0.500 AVG 0.001 AVG 0.00 0.010 0.000 0.001 0.001

ENCLAVE Attribute CLS/GRP P Goal % D EAppl% TCPU USG DLY IDL

ENC0003 CCT HTTPS1 1 0.80 25 18.75 26.78 30 88 0.0
HTML
COLLOR

ENC0001 CTT HTTPS1 1 0.80 24 16.27 23.12 29 89 0.0
HTML
CARDOSO
104 VSAM Demystified

• ENQ delays
• Operator delays (mount and messages)
• Subsystem delays (JES, HSM and XCF)

3. Let us now zoom in to these delays in the report, Enclave Classification
Data:

As you can see, detailing the enclave ENC00003, 77% of the delays are
caused by I/O delays, that is, being delayed in the UCB or in the channel
subsystem (pending time). The Using I/O value is 27%, meaning the
application, is executing a channel program (connected or disconnected).

4. Next we will zoom a little more, going to the Monitor III Device Delay report
(DEV):

DEV Report

To date, there is no RMF report showing details (at a volume level) about
the I/O using and I/O delay of an enclave. Then, you must know the name
of the address space where the HTTP transactions are doing I/O. In this
case it is the HTTPS000. Here we can see that the volume VSMS15 is
responsible for 70% of the delays experienced by the enclave the HTTP
transactions.

The following details are available for enclave ENC00003 :
Press Enter to return to the Report panel.

Detailed Performance Statistics:

-- CPU Time -- ------------- Execution States -------------
Total 26.78 #STS -Using- ------ Delay ------ IDL UNK
Delta 22.50 CPU I/O CPU I/O STO CAP QUE

592 6 27 12 77.0 0.0 0.0 0.0 0.0 0.3

Service DLY USG CON ------------ Main Delay Volume(s) -
Jobname C Class % % % % VOLSER % VOLSER % VOLSER

HTTPS000 S SYSSTC 77 27 23 70 VSMS15 11 VSMS19
MICHAELL B NRPRIME 39 15 14 39 BPXLK1
MCPDUMP S SYSSTC 36 18 20 36 D24PK2
CHARLESR B NRPRIME 33 13 13 28 BPXLK1 3 HSML02 2 BPXSSK
DFHSM S SYSSTC 30 83 35 10 HSML17 5 SMS026 4 HSMOCD
SHUMA3 T TSOPRIME 18 52 53 13 D83ID0 5 HSML02
Chapter 2. Performance 105

5. Now, we need to go to the Monitor III DEVN report to see details about the
volume.

In the DEVN report for volume VSM15, we have the I/O response time (.022
seconds), the I/O rate (42.1 I/Os per second), the IOSQ time (0.006 second)
and the percentile distribution of connect, disconnect and pending. If you
want to derive how much of connect per I/O operation (AVG CONN TIME)
follow this line of thought: “If the range is 100 seconds, the total connect time
was 8 seconds. In 100 seconds it was executed (42.1 * 100) I/O instructions.
So, dividing 8 by 4210, we have 2 milliseconds of AVG CONN TIME”.

6. Now, the final step using RMF reports is to discover the data set involved
in the performance problem. We can do this through the Monitor III DSNV
report:

Finally we have all the information — the volume and the data set name
(which, incidentally, is a VSAM data set). You should determine the largest
figure between IOSQ, pending, connected, and disconnected in your
installation (in our example it is disconnect time). Depending on the one you
pick, go to the corresponding topic in this chapter, where you will find
recommendations to improve it. Remember that all of these suggestions refer
to one of the three ways of solving performance problems, that is: buy, tune,
or steal.

Device Identification -- -- Activity -- ACT CON DSC - Pending - - Jobs -
VolSer Num Type CU S Rate RspT IosQ % % % % Rsn. % USG DEL

VSMS15 006C 33903 3990-3 S 42.1 .022 .006 68 8 60 2 DB 1 0.0 0.8
VSMS10 0051 33903 3990-3 S 80.7 .011 .005 47 24 1 22 DB 11 0.2 0.7
JOBL17 0703 33903 3990-3 S 52.2 .015 .000 76 22 54 0 0.2 0.6
TSO015 006E 33903 3990-3 S 11.1 .024 .001 26 3 20 3 0.0 0.3
VSMS06 0056 33903 3990-3 S 8.9 .034 .001 30 9 18 3 DB 2 0.1 0.2

-------------------------- Volume VSM15 Device Data --------------------------
Number: 006C Active: 68% Pending: 2% Average Users
Device: 33903 Connect: 8% Delay DB: 1% Delayed
Shared: Yes Disconnect: 60% Delay CU: 1% 1.4

Delay DP: 0%
-------------- Data Set Name --------------- Jobname ASID DUSG% DDLY%
PROD.KSDS.MARCH.U12 ENC00003 0026 20 70

BATQMF2 0089 50 20
106 VSAM Demystified

However, before you try to find a way to improve your I/O performance,
please refer to 2.7.2, “Reduce the number of I/Os” on page 107, where you
will find suggestions to eliminate this problem.

2.7.2 Reduce the number of I/Os
The general rule, that the best I/O is the one that is not executed, still applies
to VSAM. Therefore, before trying to improve the I/O operation, let us focus
on how to avoid these I/Os. The general techniques for doing that are
explained in the following sections.

2.7.2.1 Buffering
Buffering is one of the most important VSAM features that can be used to
avoid I/Os, and consequently to improve performance. There are two types of
buffering: VSAM controlled buffer pools, and Hiperbatch.

VSAM controlled buffer pools
VSAM controlled buffer pools are controlled by LSR, NSR, RLS, and GSR.
Some of them allocated in the application address space and some in the
hiperspace. Refer to 2.6.9, “Buffering options” on page 58.

Hiperbatch
Hiperbatch is designed to eliminate the problems caused by:

• Multiple jobs in one OS/390 image requesting data from the same
QSAM/VSAM NSR data set simultaneously. Each job causes I/O
operations to the device holding the data set. The more jobs that access
the data set concurrently, the more I/O operations and contention for the
device, and the longer the wait time for each I/O request.

• Jobs or job steps passing temporary or short-lived QSAM or VSAM NSR
data sets to subsequent jobs. As a job completes, it puts the data used
back onto DASD.

One important aspect of Hiperbatch is that installations can take advantage of
these performance benefits without having to change existing application
programs or the JCL required to run them.

Hiperbatch depends on the data lookaside facility (DLF) address space, to
control access to an Hiperspace Expanded Storage Only (HS ESO).

RACF DLFCLASS profiles provide the data set name list that DLF needs. The
existence of a DLFCLASS profile for a VSAM data set identifies that data set
as one that is eligible to be processed as a DLF object.
Chapter 2. Performance 107

When DLF is active, the first attempt to access a QSAM or VSAM data set
defined to DLF causes it to create a DLF object (like a data set in the HS
ESO). A DLF object contains data from a single data set managed by
Hiperbatch. The user (an application program) is connected to the DLF
object, and the connected user can then access the data in the object through
normal QSAM or VSAM macro instructions.

When subsequent users access the data set, they are connected to the
object. The system manages shared access to the DLF object in the same
way it would manage shared access to the data set. When a user
relinquishes access, DLF disconnects that user from the object.

A DLF object exists until there are no users of the data set, at which time DLF
deletes the object. As long as there is at least one user of a data set the
access pattern means that the DLF object exists.

However, if a batch job or job step creates a data set and passes it as input to
another job or job step, there is not always one user of the data set, and the
system would delete the DLF object. To prevent this automatic deletion of an
object, define the data set to DLF as a retained DLF object. A retained DLF
object is one that the system does not automatically delete when there are no
users of the data set.

Refer to Figure 21 for the following example:

We have a non-retained data set (here called Master), that is a DLF object.
All the reading jobs should be started in parallel (as usual without
Hiperbatch). The first job (J1) reads sequentially the record one (R1) and
suffers the I/O delay. After the I/O completion, one copy of R1 is delivered to
J1, and another copy is kept in the HS ESO by Hiperbatch. When J2 requests
an I/O for R1 reading, it is intercepted and fulfilled with the R1 copy in the HS
ESO. Then, for N Jobs reading M records each, from the Master, we have
only M accesses to DASD, instead of M * N.

The figure highlights the I/O operations not executed (saved).
108 VSAM Demystified

Figure 21. Hiperbatch example

Following are some comments about using Hiperbatch with VSAM:

• VSAM non-shared resource (NSR) access is a requirement.

• Hiperbatch does not support extended format data sets.

• VSAM organizations KSDS, ESDS, and RRDS with a control interval of
4096 bytes, or a multiple of 4096 bytes, are eligible.

• The EXCP counts in SMF records used to record I/O use do not change;
the counts reflect I/O operations requested regardless of whether a
request is satisfied by a physical I/O operation or from a DLF object in
expanded storage.

• If the data set is a VSAM key sequenced data set (KSDS), the DLF object
contains only the data component, not the index component.

Note: means chronological events

(1) J0 Updates master
(2) J0 Closes and unlockes master
(3) J1 Reads R1 (copy to HS ESO)
(4) J1 R1 (copy to J1 buffer)
(5) J2 Reads R1 (from HS ESO)
(6) J2 Reads R2 (copy to HS ESO)
(7) J2 R2 (copy to J2 buffer)
(8) J1 Reads R2 (from HS ESO)

Hiperbatch: Non-Retained Dataset Example

J0

x

J1
J2

Updates

Close

Master

HS ESO

R2 R2

R1R1

6

3

4
5

2

1

8

7

Chapter 2. Performance 109

• To avoid data integrity exposures, Hiperbatch does not process a VSAM
data set with shareoptions 3 or 4, even if that data set has been defined as
eligible for Hiperbatch.

• VSAM data sets with the number of strings (ACBSTRNO) value greater
than 1, cannot be Hiperbatch objects.

• VSAM data sets must be opened by the base cluster name.

• If a random (or sequential) program changes data in the data set, that
change is also made to the DLF object.

• This method is best suited for sequential processing.

2.7.2.2 I/Os associated with CA splits
These I/Os should be avoided. CA splits generate many I/O operations. CA
splits occur in a KSDS or VRRDS along inclusions and increase the logical
record size during an update. CA splits may be minimized by the use of CA
free space. Refer to 2.6.4, “Free space” on page 50. CI splits is not a problem
because it needs less than five I/Os.

2.7.2.3 Secondary space allocations
Every secondary allocation implies going through End-of-Volume processing
with numerous I/Os in the catalog and VTOC. Refer to 2.6.1, “Allocation units”
on page 42. You should require a consistent amount of secondary allocation.

2.7.2.4 Write checks
Write checks needlessly increase the number of I/O operations. Refer to
2.6.7.1, “Write checks” on page 55. These should be avoided.

2.7.2.5 RECOVERY option
Use the SPEED option instead, when loading a VSAM file. Refer to 2.6.7,
“Initial load option” on page 54.

2.7.2.6 Defer write
Whenever you can, ask for defer write to save I/O operations. Refer to
2.6.9.5, “Deferring write requests” on page 75, for more information.

2.7.2.7 Use of VSAM data sets
Is the VSAM data set you are using the right one to address the type of
access and organization required by your application? For example, if you
are accessing your VSAM ESDS data set only sequentially, maybe replacing
it by SAM could be a good idea where performance is concerned. You can
save numerous I/O and CPU cycles. Often, you may be paying for a function
that you are not using. Following is a list of the data set organizations, in
110 VSAM Demystified

ascending order of complexity and resource consumption (CPU storage and
I/O), where the increased complexity increases I/O and CPU processing:

• VSAM LDS — no indexes, no logical record concept, no physical
inclusions or deletions.

• SAM — no indexes, no physical inclusions, logical record concept. Fixed
length records perform better than variable length records.

• BPAM (PDS/PDSE) — no indexes, no physical inclusions, logical record
concept (fixed or variable), some directory processing (could be very
heavy for large non-buffered directory).

• RRDS — no indexes, fixed length records, no physical insertions (just use
pre-defined free slots).

• ESDS — no indexes, variable length record, no physical insertions.

• KSDS/VRRDS — indexes, variable length record, physical insertions.

2.7.3 I/O wait time (IOSQ) for VSAM files
Tw(IO) has two components respectively: IOS Queue Time and Pending
Time. Here, we cover the first one. Let us suppose that you are reading this
because the IOSQ time is the dominant factor in the I/O of your VSAM data
set.

IOS Queue Time is the time waiting for the device availability in the OS/390
operating system. For a non-ESS device, Input Output Supervisor (IOS) does
not start an I/O operation to a device if there is a previous one in execution. In
this case, the I/O operation is queued in the UCB (a control block
representing the device to IOS).

A queue starts to build up when the unique server (device) is utilized above
35%. This rule applies to the IOSQ Time. This utilization can be caused by
activity coming from this MVS or from another MVS (in a shared DASD case),
or both.

To decrease the IOSQ Time, you can:

• Buy a faster device/channel to decrease the I/O Service Time (Ts(IO)) and
consequently the utilization (for the same I/O load).

• Decrease the Ts(IO) by tuning; refer to 2.7.5, “I/O service time
(disconnect) for VSAM files” on page 112 and 2.7.6, “I/O service time
(connect) for VSAM files” on page 117.

• Increase the importance of the goal or change its numerical value to make
it more difficult to be obtained. In consequence, the I/O priority is raised by
Chapter 2. Performance 111

the WLM goal mode. This happens when the transaction is not reaching
its goal and the major delay is the I/O delay. Be aware that, in this case,
you are not improving the I/O in general, but just improving the response
time of your favorite transactions (“stealing”).

• Avoid placing several active data sets on the same volume, mainly index
and data from the same KSDS. If this happens, verify your ACS routines,
perhaps by using guaranteed space to force the index in a specific
volume.

2.7.4 I/O wait time (PEND) for VSAM files
Let us suppose you are concerned because the pending time is the dominant
factor in the I/O of your VSAM data set.

Pending time is the time waiting in the channel subsystem, after the Start
Subchannel instruction, and before the starting of the channel program
execution. There is a Statement of Direction for implementing the I/O priority
concept within channel subsystem queues. This I/O priority will be the same
as defined by WLM goal mode. The pending time is formed by the following
delay times:

• All channels reaching the device are busy at same time. Verify the
utilization of the non-EMIF channel in your logical partition and the EMIF
ones in all logical partitions they serve. To fix this, you may need to avoid
EMIF, to have more or faster channels.

• The ESCD port is busy. Possibly you do not have enough ports, or this
case is masking a control unit contention.

• The control unit is busy; this happens when the control units have more
channel interfaces than the number of concurrent internal data paths. You
should decrease the load in the control unit.

• The device is busy because of shared DASD contention caused by I/O
activity from the other system or a Reserve CCW. GRS global ENQs can
offer a way to decrease such a delay (mainly the GRS start topology in a
Parallel Sysplex).

2.7.5 I/O service time (disconnect) for VSAM files
The I/O Service Time (Ts(IO)) corresponds to the execution of the channel
program. There are cases where just increasing the I/O priority does not pays
back, for instance, when the queue length is small, or when all the requests in
the queue belong to the same transaction. In this case, we must look at the
I/O Service Time, which can be divided into two parts: the disconnect time,
112 VSAM Demystified

and the connect time. Here we cover the disconnect. Let us suppose that the
disconnect time is the dominant factor in the I/Os of your VSAM data set.

Disconnect time occurs when the channel is not performing activities related
to the execution of the channel program. It is disconnected. This means that
the target record for a read is not in the cache, and the disk access is a
requirement.

The best solution to decrease the disconnect time is to force the use of cache
(if the I/O workload is cache-friendly). For a write in the modern control unit,
almost all writes are cache hits, so the disconnect time trends to be zero. An
exception to that is when a heavy sequential write load causes DASD Fast
Write (DFW) bypass the non-volatile cache (NVS) and synchronously store
data in the disks. DFW bypass is covered later in this chapter.

Certain controllers can produce a different type of disconnect time, which
occurs when the device is busy because shared DASD busy. Here, the
normal behavior is to inform the channel, which informs SAP, and the delay
time is accounted for under pending time. However, the controller accepts the
I/O request from the channel and disconnects it. So, the shared DASD device
delay is reported under disconnect time instead of pending, as it should be.

2.7.5.1 Cache highlights
A cache is a fast storage (no mechanical movement) located in the controller
with two functions: to minimize access to disks (by having cache hits) and to
serve as a speed matching buffer to synchronize elements with different
speeds (like channels and disks) in a cache miss. In this discussion the term
disk does not have the same meaning of DASD. Disk implies the RAID media,
where data is stored in fixed block architecture (FBA) blocks through an SSA
or an SCSI protocol as used by modern controllers. DASD is the logical
3390/3380 device as perceived by you, your application, and your MVS
operating system.

In order to have random cache hits (saving disk access) for reads and writes,
the I/O workload must access the same data. Typically there are two types of
hits, when the application revisits data:

• Exactly the same logical record in a CI is already in cache.

• The same data CI is already in cache because another logical record was
previously accessed.

For sequential access, it is important to say that cache does not save data CI
disk I/O operations. The cache only tries to match the speed of the disks and
channels. Consequently, the faster resource is less utilized.
Chapter 2. Performance 113

Random reads and random writes have a completely different stories.

Refer to 2.7.5.3, “Decrease disconnect time VSAM access” on page 116.
There we discuss what to do with this type of access. Before we introduce
some specific recommendations about VSAM and the cache, it may be a
good idea to review the basic cache concepts, in B.1.3, “DASD cache
concepts” on page 226.

2.7.5.2 VSAM hints to decrease disconnect time by using cache
If the disconnect time of your key VSAM data sets is above two milliseconds,
read this topic. In our example, refer to item 6 of 2.7, “VSAM performance
management” on page 103.

RMF is an IBM program product which measures the OS/390 system. RMF
has three Monitors together with a Postprocessor.

Each Monitor has a Data Gatherer and a Data Reporter. For Monitor I
and Monitor II, both functions are clustered in the same address space. For
Monitor III, they are in distinct address spaces.

• Monitor I is an ongoing non-interactive monitor, measuring system
variables.

• Monitor II is interactive, showing data mainly about address spaces.

• Monitor III is interactive, showing the major delays suffered by the
transactions. In the explanations given in this chapter, we use Monitor III
data.

For this performance scenario, let us look at the RMF Monitor III Volume
Cache report.
114 VSAM Demystified

Volume Cache report

There are no cache reports per data set in RMF. You can use the volume
report to reach your conclusions.

Look at the ICL value. If it is consistently non-zero, this may mean:

1. It is an SMS data set, and its cache attribute is never-cache. Then, change
its MSR value to always-cache or may-cache.

2. It is an SMS data set, its cache attribute is may-cache. Then change it to
always-cache.

3. It is a non-SMS data set, and IDCAMS does not properly set the cache
attributes in the volume (check whether CACHE and DFW are active in the
report header). Then, change it to normal and DFW.

If, after making the modifications listed above, the disconnect time does
not get better (smaller); this means that the data set is cache-unfriendly.
In this case, undo modifications 1 and 2 above, and read 2.7.5.3,
“Decrease disconnect time VSAM access” on page 116. If ICL is very
close to zero, read the next topic.

• If the access is dominantly for writes, with READ% consistently below
50%, take a look in the WRITE HIT% column. Pick up the value
corresponding to the highest value in Write RATE (between NORM and
SEQ). If NORM is the larger, you have a random access. Compare the
FAST value with RATE. If they are not the same, this implies that SMS is
not always using DFW cache mode. If the numbers are the same (or very
close) check the HIT% value. It must be higher than 95% (for a non-RVA
device, almost 100% of the random writes should be hits).

The following details are available for Volume VSM015 on SSID 0043
Press Enter to return to the Report panel.

Cache: Active DFW: Active Pinned: None

------ Read ------ --------- Write --------- Read Tracks
Rate Hit Hit% Rate Fast Hit Hit% %

Norm 3.7 3.6 79.8 0.8 0.8 0.8 100 82.2 0.1
Seq 0.0 0.0 100 0.1 0.1 0.1 93.3 21.1 0.0
CFW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 3.7 3.7 98.9 0.9 0.9 0.9 99.1 80.0

------ Misc ------ - Non-Cache - --- CKD ---- - Record Caching -
DFW Bypass : 0.0 ICL : 0.0 Write: 0.0 Read Miss : 0.0
CFW Bypass : 0.0 Bypass: 0.0 Hits : 0.0 Write Prom: 0.0
DFW Inhibit: 0.0
Chapter 2. Performance 115

• If SEQ is the larger value (you are writing sequential) and HIT% less than
95%, take a look in the DFW Bypass figure. If consistently non-zero, this
means:

- The write sequential load saturated the NVS and DFW bypass
occurred. That is, the records are sent synchronously from volatile
cache to disks, and this time is included in disconnect time.

- In this case your workload is the cache-unfriendly type. Refer to
2.7.5.3, “Decrease disconnect time VSAM access” on page 116.

• If the access is dominant in reads, with READ% consistently above 50%,
look in the READ HIT% column. Pick up the value corresponding to the
highest value in READ RATE (between NORM and SEQ). If NORM is the
larger, you have a random access (if not is sequential). If the
corresponding READ HIT% is less than 80%, you have found your
problem, or you may have one of the following problems:

- A low sequential Read hit. This means that the speed of the channel
(pushed by the application) is higher than the disk speed. In this case
refer to 2.7.5.3, “Decrease disconnect time VSAM access” on
page 116.

- A low random Read hit. This means that your reads are candidates for
using cache, but they are not currently doing so. Let us investigate this
in more detail:

• Possibly your access is sequential, and the KSDS has many CI
splits, impeding the controller in recognizing the sequential pattern;
then there is no look-ahead and the cache is treated in LRU mode.
Reorganization may be an answer. Refer to 4.1, “Reorganization
considerations” on page 181.

• If you are accessing data randomly, be sure that SMS is using
record level cache (RLC) for reads. It avoids polluting the cache
with the rest of the logical 3390/3380 physical track.

• If you are accessing data randomly, try to use a smaller CI for read
data or less free space in the CIs. It avoids polluting the cache with
other non-referenced logical records or free space.

2.7.5.3 Decrease disconnect time VSAM access
Before we start a logic flow to guide you along the cache-unfriendly
performance problem, let us say that before the appearance of the RAID
disks, the data set placement was key to avoid high disconnect time. Refer to
2.5, “VSAM rule-of-thumb (ROT) mode” on page 41 for the list of out of date
performance recommendations due to the implementation of new disk
technology.
116 VSAM Demystified

If cache cannot help your VSAM data set, you need to reduce the contention
on the disks. Here are some suggestions.

• Reducing I/O rate (demand) against the controller. This can be done via:

- Either compression or use of smaller CIs for random processing.

For compression, refer to 2.6.10, “Data compression” on page 84. For
use of smaller CIs, refer to 2.6.3, “Control interval size” on page 48.

- Reorganization of the data set, if there is plenty of free space in the
CIs. Refer to 2.7.6, “I/O service time (connect) for VSAM files” on
page 117.

- Reducing the number of active data sets in the controller.

• Decrease the number of writes in the controller by moving data sets, to
avoid the effect of write penalty.

2.7.6 I/O service time (connect) for VSAM files
Connect time means the period of time when the channel is transferring data
from or to the cache or exchanging control information with the controller.

Often, a high connect time is good, meaning that a great deal of data is being
transferred in just one I/O operation, through one CCW or many CCWs. If this
is your experience, examine a more detailed report (generally based in GTF
with CCW analysis) looking for the channel program.

However, if this is not the case, here are some recommendations:

• Use plenty of buffer space in the buffer pool for sequential processing:

By using many buffers in a sequential processing, you are decreasing the
number of SSCHs instructions. For every I/O operation starting, there is a
standard conversation between the channel and the controller. If you
decrease the number of SSCH, but transfer the same amount of data, you
save connect time. Refer to Table 5 on page 68 and Table 10 on page 90.

• Use data compression in CPU:

There is a difference between compaction and compression. Compaction
has to do with the simple task of extracting repetitive characters from a
text. Compression is a much more elaborate task, where dictionaries may
be used to obtain the best result (like the Ziv-Lempel algorithm). These
dictionaries contain the most repeated set of characters found in the text
and their respective compressed substitution. Refer to 2.6.10, “Data
compression” on page 84.

• Use the ECKD extended format:
Chapter 2. Performance 117

ECKD extended format (also called extended format) is a technique that
affects the way count key data is stored in a 3390/3380 logical track. It
improves performance of an I/O operation, by decreasing Ts(I/O) with a
better channel program. It is recommended that, if time permits, you
convert your data sets to extended format to get this better performance.
Refer to Table 11, showing the following results from our tests of random
processing: extended format versus non-extended format data sets.

Table 11. Random processing: extended format vs. non-extended format data sets

Here, for random processing, you can see some decrease in the number
of EXCPs and in the connect time. However, the big performance appeal
of extended format is that it allows the use of strong performance
capabilities such as striping, compressing, and SMB.

• Small CIs for random access:

This avoids bringing unneeded logical records into memory. Here there is
a recommendation. If the cluster is going to be accessed sequentially and
randomly, the CI size should be made smaller.

To solve the performance problem in sequential access, you can define
many data buffers, thus causing VSAM to chain CIs in just one channel
program. Refer to 2.6.3, “Control interval size” on page 48.

• Less free space in the CIs:

The existence of a significative amount of free space in a CI, mainly along
a sequential process, may increase the I/O connect time. This free space
may be caused by an excess in the definition of the data set, or by CI and
CA splits. Remember that any CI with a logical record is moved to storage
in a sequential read. This is not true with totally free CIs.

Note: We are not saying that all insertions increase the average free
space per byte; just the ones which cause splits do that.

The solution here is a reorganization. Refer to 4.1, “Reorganization
considerations” on page 181.

• Parallel VSAM I/O operations:

Sometimes, if you cannot decrease the Ts, you may increase the ETR by
introducing parallelism. There are two types of I/O parallel processing:

- Within a transaction:

Ext format Buffering EXCPs Connect time
(sec)

No Default 772057 549

Yes Default 771265 541
118 VSAM Demystified

The VSAM option which allows parallelism within a transaction or task
(when accessing a VSAM cluster) is data striping. Refer to 2.6.11,
“Data striping” on page 92.

- Between transactions:

There are VSAM options which allow parallelism between transactions
or tasks, when accessing a VSAM cluster, such as:

• STRNO: In multiple string processing, there can be multiple
independent Request Parameter Lists (RPL) within an address
space for the same data set. The data set can have multiple tasks
that share a common control block structure. There are several ACB
and RPL arrangements to indicate that multiple string processing
will occur:

• In the first ACB opened, STRNO or BSTRNO is greater than 1.

• Multiple ACBs are opened for the same data set within the same
address space and are connected to the same control block
structure.

• Multiple concurrent RPLs are active against the same ACB using
asynchronous requests.

• Multiple RPLs are active against the same ACB using synchronous
processing with each requiring positioning to be held.

Refer to DFSMS/MVS Using Data Sets, SC26-4922 for more information
on multiple string processing.

For more information on Share options refer to 2.6.6, “Share options” on
page 53.

For more information on SmartBatch options; refer to 2.8, “VSAM and
SmartBatch” on page 121.

In ESS, the PAV and Multiple Allegiance features implement parallelism
within and between transactions.

2.7.7 How to decrease VSAM CPU time
The major theme of this chapter is to decrease the Tr(I/O) for VSAM I/O
operations, in order to decrease the response time of key transactions using
VSAM data sets. However, chances are that the enhancements introduced by
your changes may shift the bottleneck to the CPU side. It is known that:

• If you compress your VSAM data set, your transaction response time
decreases, which is good.
Chapter 2. Performance 119

• If you stripe your VSAM data set, your transaction response time
decreases, which is also good.

• If you compress and stripe your VSAM data set, your response time gets
bigger (which is bad). The reason is that CPU is extremely busy, causing
huge CPU delays.

2.7.7.1 VSAM buffering
The adequate use of buffering (mainly for direct access) may result in savings
in the CPU usage, as you can see in Table 12.

Increasing the number of buffers decreases the number of EXCPs, that is, the
number of executed I/O operations. For the same amount of logic in your
code, the CPU time that you spend is a direct function of the number of
EXCPs. Because in our lab, the read data is not processed, we can say that:

• SRB time is caused by I/O interrupts (back end) processing.

• TCB time is the I/O operation preparation and buffer pool management.

It is clear that increasing the number of buffers means the management
cycles dominate the savings in the I/O operations. Refer to B.1, “Our
laboratory” on page 223.

Table 12. NSR — read sequential varying the number of buffers

Also, the use of better techniques to manage your buffer pool, such as BLSR
or system management buffers (SMB), can save enormous CPU cycles. See
Table 13, which shows data obtained from our lab.

Table 13. Direct access: benefits of using SMB — updates and insertions

Data buffers Index Buffers EXCPs SRB time
(Secs)

TCB time
(secs)

Default=2 Default=1 37735 0.95 2.7

10 1 7641 0.28 1.6

30 1 2549 0.15 1.4

181 1 466 0.10 1.71

Ext format Buffering EXCPs connect time
(sec)

CPU
time(sec)

No Default 772057 549 52.54

No BLSR 293960 255 24.83

Yes SMB 79741 75 11.04
120 VSAM Demystified

2.7.7.2 Use of extended format
The use of extended format data sets can save a consistent amount of CPU
time (TCB plus SRB). Consider the values shown in Table 14.

Table 14. Direct access: benefits of using SMB — updates and insertions

Refer to 1.5, “Extended format data set” on page 18, to get more information.

2.7.7.3 Compression
Compression of data can really increase the CPU time in your program.

2.7.7.4 Track versus cylinder allocation
It is not true anymore that, when allocating VSAM data sets in cylinders, you
consume less CPU than using track allocation. The validation if the channel
program is crossing an extent boundary is done by the channel. It is informed
about the correct extents through the Define Extent CCW.

2.8 VSAM and SmartBatch

IBM's SmartBatch for OS/390 addresses the major problems facing
businesses with batch workloads: lengthy processing time, contention for
resources, and unbalanced workloads. SmartBatch provides an integrated
suite of functions to solve these problems.

2.8.1 SmartBatch highlights
SmartBatch uses parallelism, workload distribution, and I/O optimization to
reduce your company's batch processing time and balance the workload
across your system or Parallel Sysplex. By running jobs and job steps in
parallel, SmartBatch can dramatically reduce the elapsed time of your job
streams. Further elapsed time reductions result when SmartBatch is used to
minimize I/O resource usage and automatically route job steps to available
OS/390 images in the Parallel Sysplex.

Gain using SMB (%) 90 86 79

Ext format Buffering EXCPs CPU time(sec)

No Default 772057 52.54

Yes Default 771265 45.67

Ext format Buffering EXCPs connect time
(sec)

CPU
time(sec)
Chapter 2. Performance 121

In summary, SmartBatch:

• Allows two or more jobs that formerly ran serially to run in parallel.

• Allows individual job steps in a multi-step job to run in parallel.

• Routes job steps to the sysplex image that is best suited to execute the
step; analyzes the steps in a batch job and schedules each step to run on
an available image based on image attributes and current capacity.

• Reduces the number of physical I/O operations, when possible, by
transferring data through image storage rather than DASD or tape.

• Optimizes I/O for tape drives and DASD.

2.8.2 SmartBatch components and VSAM
SmartBatch has four components, some of them can be exploited in order to
improve performance of batch jobs accessing VSAM data sets:

2.8.2.1 Batch Accelerator
The Batch Accelerator component of SmartBatch continuously monitors your
installation's batch workload for jobs that meet particular selection criteria.
Batch Accelerator can run a job's individual steps in parallel (job step
splitting), routing each step to the image in which the capacity satisfies the
execution requirements of the step (job step targeting).

Then, any batch job using VSAM can get improvements in the elapsed time
due to this enlarged parallelism

2.8.2.2 Data Accelerator
The Data Accelerator component of SmartBatch allows you to tune the
processing of your application's I/O requests. Data Accelerator chooses data
set I/O requests for optimization based on user-defined selection criteria. If a
data set I/O request matches the characteristics specified in a selection
definition, Data Accelerator uses the performance options established in the
action definition to provide I/O performance improvements.

Data Accelerator intercepts data set I/O based on criteria specified in data
policy definition. A data policy defines when (in selection definitions) and how
(in action definitions) I/O performance processing occurs.

Data policy definitions associate one or more data set characteristics with a
Data Accelerator response. When a data set meets the criteria specified in a
selection definition, Data Accelerator uses the response specified in the
action definition to provide I/O performance improvements.
122 VSAM Demystified

Data Accelerator provides selection criteria that allow you to control when I/O
performance processing occurs. These criteria include the following items:

• Type of file to be used (VSAM, non-VSAM, or both)
• Data definition name (ddname)
• Data set name (dsname)
• Job name
• Program name
• Step name
• Procedure step name
• SMS data class name
• SMS storage class name
• SMS management class name
• Security product group ID
• Security product user ID
• Execution job class
• Time of day

A more complex selection definition would intercept for I/O performance
processing all VSAM data sets that have a specific high-level qualifier and
that are being processed during a specific time range by a specific job.
Following are the options that you can apply to the data set:

Action option
When specified in an action definition, the action option includes or excludes
specific jobs or data sets from I/O performance processing.

• The action option has the following possible values:

- INCLUDE: Provide I/O performance processing for this data set.

- EXCLUDE: Don’t provide I/O performance processing for this data set.

• VSAM deferred writes option

The VSAM deferred writes option allows you to specify whether Data
Accelerator writes requests as they occur, or places the write requests in a
buffer to reduce physical I/O. Refer to 2.6.9.5, “Deferring write requests”
on page 75 for more information on the subject

• VSAM SHAREOPTIONS(3 3) support option

The VSAM SHAREOPTIONS(3 3) support option allows you to specify
whether Data Accelerator provides I/O performance improvements to
VSAM data sets that are allocated as SHAREOPTIONS(3 3). Because
Data Accelerator converts NSR to LSR when possible, the index buffer
invalidation process of SHAREOPTIONS(3 3) data sets might not occur as
expected.
Chapter 2. Performance 123

Allow Data Accelerator to provide I/O performance improvements only if
you know how your application is using the data set allocated with
SHAREOPTIONS(3 3).

• VSAM LSR eligible option:

By default, Data Accelerator switches to LSR processing for VSAM data
sets. This is one of the advanced techniques that Data Accelerator uses to
provide performance benefits. Except for the performance benefits that
are realized, an application is seldom aware of the switch to LSR
processing. If your application is unable to tolerate the switch to LSR
processing, However you can change the default so that Data Accelerator
does not switch to LSR processing.

• Actual I/O count option:

The actual I/O count option allows you to specify whether Data
Accelerator reports to SMF the number of I/O requests made by an
application or the actual number of I/O requests made by Data
Accelerator. The actual I/O count option is available for access to
non-VSAM data sets only.

• Dynamic region adjustment option:

The dynamic region adjustment option allows Data Accelerator to modify
region specifications automatically to compensate for additional
I/O-related storage areas obtained on an application's behalf.

For example, if you have set the REGION parameter to 800 KB and Data
Accelerator requires 100K for I/O performance processing, the REGION
parameter for the job is dynamically adjusted to 900 KB when you specify
Y for this option. The dynamic region adjustment option provides the
following benefits:

- Eliminates the need to increase the region value on the JOB or EXEC
JCL statements to prevent S878 and S80A abends when Data
Accelerator is used. Without the dynamic region adjustment option,
attempts to obtain additional storage on the application's behalf can
result in storage-related abends if a small region value is specified in
the JCL or SMF IEFUSI region control exit. With the dynamic region
adjustment option, storage-related abends are minimized.

- Prevents the application from experiencing a decrease for storage
obtainable with GETMAIN when Data Accelerator is used. Without the
dynamic region adjustment option, the increased amount of I/O-related
storage obtained on the application's behalf decreases the amount of
storage that the application can obtain for its own use.
124 VSAM Demystified

• Resources usage bias option:

The resource usage bias (RUB) option allows you to specify how Data
Accelerator is to obtain and use virtual storage buffer resources when it
provides I/O performance processing. The option determines the type of
I/O performance techniques used and the relative amount of user and
Data Accelerator buffers allocated. You specify the resource usage bias
option as a numeric value.

A special RUB value, 99, is provided to indicate that Data Accelerator is to
dynamically select the optimum RUB value for the:

- Type of processing being performed
- System resource availability at the time of processing.

For most situations, allowing Data Accelerator to select the RUB value
provides the best performance benefits without over committing system
resources. Under some circumstances, however, you might want to
override Data Accelerator's choice to favor CPU or virtual storage for a
given application or environment.

You might need to experiment with the RUB values to determine the
optimum value for certain special applications or environmental conditions

For access to VSAM data sets, Data Accelerator manipulates buffer pools
to obtain I/O performance improvements. This section explains how to
select an appropriate RUB value for use with VSAM data set access. The
RUB value for VSAM access adjusts the size of the buffer pool. Your
available resources will determine your selection for the global setting.

- RUB=01-10 — As you move from 01 to 10, the size of the buffer pool is
increased. You might need to experiment with several values before
you determine the optimum value for your applications.

- RUB=99 — Data Accelerator dynamically selects an appropriate RUB
value based on the following factors:

• Open intent
• CI size
• Buffer location
• Whether the addition of buffers poses a storage-shortage risk
• Whether the CPU is currently constrained
• Whether the paging subsystem is currently constrained.

• Write Statistics Report Option:

The write statistics report option allows you to specify whether Data
Accelerator generates I/O performance statistics reports when SAM and
non-VSAM data sets are selected for performance processing. The
reports are written to the JES system message log.
Chapter 2. Performance 125

• Message Level Option:

The message level option allows you to indicate what types of diagnostic
messages you prefer.
126 VSAM Demystified

Chapter 3. Recovery of VSAM data sets

In the complex environment of computing today, it is almost a miracle that
everything runs as expected. The possibilities for error are enormous,
covering both hardware and software. S/390 is a very stable platform, which
is capable of performing automatic recovery at all levels to hide the problem
while attempting to solve it for the end user. Together with the recovery
action, numerous records are captured describing the error.

Most likely, you have heard user complaints like these:

• Everything was working yesterday; we have changed nothing since then.

• We are starting to get strange error messages, and the explanations in the
manual are meaningless.

• We cannot access the data, and do not know where to turn for help.

Your data is one of the most precious assets of your company. The challenge,
in order to save your data, is to use all the error information to answer these
three questions:

• What happened to cause this problem?

• What must you do in order to recover your data now?

• What must you do to avoid these problems in the future?

In this chapter, we describe how to handle common VSAM recovery
situations, and point out where to get more information. Note that we are not
covering VSAM component problem determination; this is beyond the scope
of our book. For example, we do not discuss the recovery of:

• ICF catalogs. Refer to Integrated Catalog Facility Backup and Recovery,
SG24-5644-00

• VSAM data sets in Record Level Sharing (RLS) mode. Refer to CICS/
VSAM Record Level Sharing: Recovery Considerations, SG24-4768.

• VSAM data sets accessed by subsystems as CICS, DB2

• Abends in VSAM (record management, catalog management), OPEN,
CLOSE and EOV or any OS/390 component.

• VSAM data sets in non-RAID controllers.

3.1 Basic recommendations

Before starting, we would like to offer some basic recommendations:
© Copyright IBM Corp. 2001 127

• Back up all your critical data by using methods such as:

- SMS management class with ABARS for backups, to allow restore of
your data in the case of a hardware error and/or application error, and
for use in disaster recovery.

- Remote copy for disaster recovery.

• Familiarize yourself with getting the required documentation, such as logs,
dumps, traces, and messages associated with errors.

• Keep your system at a current maintenance level. Apply PTF selective
service in your OS/390 and DFSMS/MVS, especially the ones associated
with VSAM. To find fixes associated with broken VSAM data sets, use the
search word 'dsbreaker' in either retain or through ibmlink (askq)

3.2 VSAM recovery information sources

Following is a list of documents and Internet sites where you can find
assistance in the VSAM recovery arena:

• VSAM Knowledge Database, which is an interactive diagnostic tool. It is a
question-and-answer driven knowledge data base that resides on the
DFSMS/MVS Technical Support Web site under "Technical Database" at
the following URL:

http://knowledge.storage.ibm.com/

• APAR, II08859 which has a methodology to assist you in fixing broken
VSAM clusters

• DFSMS/MVS DFSMSdfp Diagnosis Reference, LY27-9606-05

3.3 How to back up VSAM data sets

Here, we discuss the various methods of backing up VSAM data sets, both
while open and while closed.

3.3.1 IDCAMS EXPORT and IMPORT
First, we would like to explain some of the unique characteristics of the
EXPORT and IMPORT commands:

• The EXPORT command either exports a cluster or an alternate index or
creates a backup copy of an integrated catalog facility catalog.
128 VSAM Demystified

Exporting means to store the cluster or AIX data in other media in a
non-processable format, together with catalog information about the data
set. An empty candidate volume cannot be exported. Access Method
Services acknowledge and preserve the SMS classes during EXPORT.

Following is an example in which a key-sequenced cluster,
ZZZ.EXAMPLE.KSDS1, is exported from a user catalog, HHHUCAT1. The
cluster is copied to a portable file, TAPE2, and its catalog entries are
modified to prevent the cluster's data records from being updated, added
to, or erased.

• IMPORT is the opposite operation to EXPORT. Here, you reload the
cluster or AIX data and recatalog its catalog information in an active
catalog.

Following is an example in which a key-sequenced cluster,
BCN.EXAMPLE.KSDS1, that was previously EXPORTed, is IMPORTed.
The OUTFILE and its associated DD statement are provided to allocate
the data set. The original copy of BCN.EXAMPLE.KSDS1 is replaced with
the imported copy, TAPE2. Access Method Services finds and deletes the
duplicate name, BCN.EXAMPLE.KSDS1, in the catalog VCBUCAT1.

A duplicate name exists because TEMPORARY was specified when the
cluster was exported. Access Method Services then redefines
BCN.EXAMPLE.KSDS1, using the catalog information from the portable
file TAPE2.

//EXPORT1 JOB ...
//STEP1 EXEC PGM=IDCAMS
//RECEIVE DD DSNAME=TAPE2,UNIT=(TAPE,,DEFER),
// DISP=NEW,VOL=SER=003030,
// DCB=(BLKSIZE=6000,DEN=3),LABEL=(1,SL)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
EXPORT -
ZZZ.EXAMPLE.KSDS1 -
OUTFILE(RECEIVE) -
TEMPORARY -
INHIBITSOURCE
/*
Chapter 3. Recovery of VSAM data sets 129

3.3.2 Backup-while-open concepts
Backup-while-open (BWO) allows DFSMSdss logical dump for an IMS or a
CICS/VSAM data set while open-for-update. BWO works with Concurrent
Copy (in 9390), or Snapshot (in RVAs), or Flashcopy (in ESS). The VSAM
data set must be SMS managed.

The DFSMSdss BWO function does not apply to: Catalogs, VVDSs, LDSs,
physical dump, and restore.

When you define the cluster with IDCAMS, you must declare it as a BWO.
The options are:

• TYPECICS

Use the TYPECICS parameter to specify BWO in a CICS environment.
For RLS processing, this activates BWO processing for CICS. For
non-RLS processing, CICS determines whether to use this specification or
the specification in the CICS control data named FCT.

Note: If CICS determines that it uses the specification in the CICS FCT,
the specification might override the TYPECICS or NO parameters.

• TYPEIMS

If you want to use BWO processing in an IMS environment, use the
TYPEIMS parameter.

• NO

Use this parameter when BWO does not apply to the cluster.

//IMPORT2 JOB ...
//STEP1 EXEC PGM=IDCAMS
//SOURCE DD DSNAME=TAPE2,UNIT=(TAPE,,DEFER),
// VOL=SER=003030,DISP=OLD,
// DCB=(BLKSIZE=6000,LRECL=479,DEN=3),LABEL=(1,SL)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
IMPORT -
INFILE(SOURCE) -
OUTDATASET(BCN.EXAMPLE.KSDS1) -
CATALOG(VCBUCAT1)
/*
130 VSAM Demystified

To have BWO with total security and integrity, the following products are
modified:

• DFSMSdfp, where catalog services have been changed to prevent
unauthorized alterations of BWO indicators. DFSMSdfp does not allow
deletion of a data set that DFSMSdss dumps as a BWO data set.

• DFSMSdss enqueue serialization has been changed to prevent data
integrity exposures when performing defrag, dump, or restore operations.

• DFSMShsm, used for incremental backups and aggregate backups of a
data set, invokes DFSMSdss to perform BWO.

In the catalog are the following fields referring to BWO:

• BWO — Data set is enabled for backup-while-open.

• BWO STATUS — Indicates the status of the data set. Status can be:

- Data set is enabled for backup-while-open.

- Control interval or control area split is in progress.

- Data set has been restored and is down level. It might need to be
updated with forward recovery logs.

• BWO TIMESTAMP — A CICS timestamp that indicates the time from
which forward recovery logs have to be applied to a restored copy of the
data set

3.4 Space Constraint Relief parameter (fewer X‘037’ abends)

Before we start explaining more complicated recovery situations, let us
address a common abend situation prior to DFSMS/MVS 1.4.

Users occasionally encounter data set allocation or extension failures (the
X37 type of abends) because there is not enough space available on a
volume to satisfy the request. Incidentally, VSAM does not externalize an X37
abend. You recognize the out-of-space condition by the message IEC070I
203-204, where 203 is the reason code. You find the explanation in the
message IEC161I, return code 203, when no secondary space allocation
quantity was specified. Return code 204 is issued when a new extend was
attempted, but the maximum number of extents was reached.

SMS alleviates this out-of-space situation to some extent by performing
volume selection, checking all candidate volumes before failing an allocation.

With DFSMS/MVS 1.4, you can also use the Space Constraint Relief and
Reduce Space Up To (%) attributes in the data class to request that an
Chapter 3. Recovery of VSAM data sets 131

allocation be retried if it fails due to space constraints. SMS retries the
allocation by combining any of the following:

• Spreading the requested quantity over multiple volumes
• Allocating a percentage of the requested quantity
• Using more than 5 extents

Space Constraint Relief specifies whether or not to retry an allocation that
was unsuccessful due to space constraints on the volume. Note that
allocation is attempted on all candidate volumes before it is retried. This
attribute applies only to system-managed data sets, and is limited to new
data set allocations, and while extending the data set on new volumes.

Out-of-space conditions are now further reduced for new volume processing
of SMS-managed data sets. VSAM and non-VSAM data sets can now acquire
up to 123 extents instead of just 5 extents on a volume. Multivolume VSAM
data sets can now have a maximum of 255 extents across volumes for each
component, but no more than 123 extents per volume.

Two new parameters, Space Constraint Relief and Reduce Space Up To (%),
are added to the SMS data class definition for this support.

Reduce Space Up to (%) specifies the amount by which you want to reduce
the requested space quantity when the allocation is retried. You must specify
Y for the Space Constraint Relief attribute. Valid values are 0 to 99.

If you specify Y for Space Constraint Relief, SMS begins the retry process.
This is a one or two-step process, depending on the volume count you
specified. For JCL allocations, SMS determines the volume count by taking
the maximum of the unit, volume, or volser count. If these are not specified,
SMS picks up a volume count from the data class. If there is no data class,
SMS defaults the volume count to one:

• If the volume count is one (one-step process):

SMS retries the allocation after reducing the requested space quantity
based on the Reduce Space Up To attribute. SMS simultaneously
removes the 5-extent limit, so that SMS can use as many extents as the
data set type allows

• If the volume count is greater than one (two-step process):

First, SMS uses a best-fit volume selection method to spread the primary
quantity over more than one volume (up to the volume count). If this fails,
SMS continues with the best fit method after reducing the primary quantity
and removing the 5-extent limit.
132 VSAM Demystified

If you request Space Constraint Relief but do not specify a percentage value
(either 0 or blank), SMS does not reduce the requested space quantity. This
implies your application cannot tolerate a reduction in the space to be
allocated, so you want to remove the 5-extent limit, thereby allowing SMS to
use more than 5 extents.

For extends to new volumes, Space Constraint Relief is strictly a one-step
process. If regular volume selection has failed to allocate space, SMS
reduces space or removes the 5-extent limit, but does not try the best-fit
method.

The number of extents vary depending on data set type, as follows:

• Non-VSAM, non-extended format data sets, up to 16 extents on the
volume

• Non-VSAM, extended format data sets, up to 123 extents

• PDSE, up to 123 extents on the volume

• VSAM data sets, up to 255 extents per component but only up to 123
extents per volume per component

When you request Space Constraint Relief in one or more data classes, you
might notice any of the following:

• Very large allocations might succeed if a sufficiently large volume count is
specified in the data class or through JCL.

• Existing data sets might end up with less space than initially requested on
extents.

• The space allocated for new data sets might be less than requested.

• The number of extents used during initial allocation might result in fewer
extents being subsequently available. For example, if the primary space
allocation uses 10 extents when allocating a physical sequential data set,
then only 6 extents are left for allocation of the secondary quantity.

• You might observe fewer X37 abends.

3.5 IDCAMS recovery commands

IDCAMS has three important commands used to recover VSAM clusters and
catalogs. They are: EXAMINE, DIAGNOSE, and VERIFY.
Chapter 3. Recovery of VSAM data sets 133

3.5.1 EXAMINE command
EXAMINE is an IDCAMS command that allows the user to analyze and
collect information on the structural consistency of KSDS data set clusters
and of a VVRDS data set cluster. In addition, EXAMINE can analyze and
report on the structural integrity of the basic catalog structure (BCS) of an ICF
catalog. This function cannot share a cluster opened for output or update by
other task.

The EXAMINE function executes two possible tests:

• Test the Index portion (INDEXTEST), the default.

Evaluates the full index component of the KSDS/VRRDS cluster by
cross-checking vertical and horizontal pointers contained within the index
control intervals, and by performing analysis of the index information.
Usually is a medium to small resource consuming task.

• Test the Data portion (DATATEST).

Evaluates the index sequence set and data component of the
key-sequenced data set cluster by sequentially reading all data control
intervals, including free space control intervals. Tests are then carried out
to ensure record and control interval integrity, free space conditions,
spanned record update capacity, and the integrity of various internal
VSAM pointers contained within the control interval. Usually this is a long
resource consuming task.

You can also limit the number of error messages generated (ERRORLIMIT)
by EXAMINE. Refer to 3.7, “Broken data sets” on page 139, for information
about what to do whether EXAMINE is reporting errors in the Index or Data
portion. Refer also to B.5, “IDCAMS Examine messages” on page 251.

3.5.2 DIAGNOSE command
To analyze a catalog for synchronization errors, you can use the IDCAMS
DIAGNOSE command. With this command, you can analyze the content of
catalog records in the BCS and VVDS, and compare VVDS information with
DSCB information in the VTOC. Besides checking for synchronization errors,
DIAGNOSE also checks for invalid data, or invalid relationships between
entries.

Because the DIAGNOSE command checks the content of the catalog
records, and the records might, for example, contain damaged length field
values, there is a possibility that the DIAGNOSE job will abend. For detailed
information on using DIAGNOSE, see DFSMS/MVS Managing Catalogs,
SC26-4914.
134 VSAM Demystified

Also refer to 3.7, “Broken data sets” on page 139, to get information about
what to do whether DIAGNOSE is reporting errors in the BCS or VVDS.

3.5.3 VERIFY command
Some clarification of the word VERIFY is necessary in many cases. VERIFY
is a record management macro (just like GET or PUT). It can be used with
certain types of opened VSAM data sets to ensure that various fields in the
VSAM control blocks in catalog are accurate. It checks the ICF catalog
against the VSAM clusters.

What record management does on receiving this macro is to start reading the
data set CI by CI starting with the current high used RBA value stored in the
ARDB. If the data set is a KSDS, then both the index and the data will be
VERIFY’d.

VERIFY is also an IDCAMS command. In this case, IDCAMS will open the
requested data set for output, issue the record management VERIFY macro
and then close the data set. When the data set is closed, VSAM Close
processing will use its catalog interface to call Catalog to update the VVR
information from the new information in the VSAM control blocks (AMDSB
and ARDB mostly). It is important to understand that IDCAMS is neither
updating VSAM control blocks nor the catalog directly.

Clusters, alternate indexes, entry-sequenced data sets, and catalogs can be
verified. Paths over an alternate index and linear data sets cannot be verified,
the same with RLS data sets. Paths defined directly over a base cluster can
be verified.

When a data set is closed, its end-of-data and end-of-key-range information
is used to update the data sets cataloged information (located in the VVR
AMDSB cell). Among other fields, we have:

• High used RBA/CI for the data set
• High key RBA/CI
• Number of index levels
• RBA and the CI number of the first sequence set record
• System time stamp

Refer to 3.9, “IDCAMS LISTCAT output fields” on page 166, for more
information.

3.5.3.1 Implicit VERIFY versus explicit VERIFY
Another area that is confusing when talking about VERIFY involves the terms
"explicit VERIFY" and "implicit VERIFY". An explicit VERIFY refers to the
Chapter 3. Recovery of VSAM data sets 135

user initiating the VERIFY himself by issuing an IDCAMS VERIFY job against
the data set. An implicit VERIFY refers to VSAM Open processing internally
issuing the VERIFY macro against the data set when it determines that the
data set was not previously closed properly; this means that a previous job
which had the data set open for output has either abended or failed to close
the data set for some reason.

Open processing uses a bit in the catalog to determine this. When a job
opens a data set for Output processing, this bit (the ‘open for output' bit) is
turned on. It is not turned off until the job closes the data set normally. Open
processing, if it finds this bit on in a subsequent open, uses GRS (enqueueing
against the data set name) to determine if the data set is currently open for
output. If not, then it concludes that the last close was abnormal and issues
the VERIFY before completing the Open process. It also issues IEC161I
messages (rc56 and rc62) to indicate that it has done this. All Open jobs
against the data set will get this implicit VERIFY and the associated
messages until the data set is opened for Output.

3.5.3.2 Implicit VERIFY problems
Here we discuss a couple of problems with the implicit VERIFY that are not
inherently obvious.

Normally, a VERIFY does not take much overhead because it is reading in CI
mode from the HURBA in the catalog to the “real” HURBA. However, if the
data set had much activity in the Output job before it abended (for example, a
log file that was being loaded), then the VERIFY could take many minutes, as
it basically reads the entire file. This could also be a severe impact if there
were many files open in the application.

CICS provides a good example of this problem. If the CICS region comes
down hard (for example, if a CEMT P SHUT IMM is issued), then all TCBs are
abended, and all files open for output at the time will have the ‘open for
output’ bit on in the VVR. This will mean they will all need to be implicitly
VERIFY'd as the region is brought back up. If this is the case, you need to
have a procedure in place to explicitly VERIFY the important files in the case
of an abend situation so that the system can come up and the important
applications can start running immediately.

Another situation is where you are sharing DASD, but do not have all systems
in a GRS ring. If you open the data set for Input, on the system that does not
have the data set open for Output, then Open processing will find the ‘open
for output’ bit on, but not the ENQ. Therefore, it will conclude (incorrectly) that
the data set was not closed properly and do an implicit VERIFY. Most
customers actually like this because it means that the HURBA will be current
136 VSAM Demystified

on their input job and they will be able to read all the records. The problem
happens when they put this system into the ring and then no longer get the
implicit VERIFY and cannot read all the records in the file. Unfortunately, this
is working as designed, and they must either add a VERIFY to their read
program or do a CLOSE or TCLOSE on the Output job.

There is also a common misconception that VSAM will always do an implicit
VERIFY on the file if it was abnormally closed. This is true for files that have
SHR(1 3) or SHR(2 3) and SPEED has not been specified when the cluster
was defined (if, of course, the user has all his shared systems set up with
GRS correctly). But in the case of SHR(3 x) and SHR(4 x) this is not true.
With cross system shared data sets the "open for output bit" is not reliable.
This is because if two systems are open for output at the same time and one
closes, the bit gets turned off. If the second one then abends, the bit is still off
and there is nothing to tell VSAM Open that the last job that had the data set
open for output abended. Therefore, VSAM Open cannot reliably VERIFY
the data set. That is why the user is responsible for issuing the VERIFY
macro after Open on data sets with SHR(3 x) and SHR(4 x).

ACTION=REFRESH
One addition which was made to VSAM quite some time ago was the
ACTION=REFRESH parameter of the VERIFY macro. Without this parameter,
the VERIFY macro will only read up to the current HARBA of the data set (as set
in the ARDB control block). Since this value could have changed since the last
time the data set was opened by the current job, this facility allows the control
blocks for a data set to be updated to reflect the current structure of the data or
index (from the values in the catalog/VVR). To accomplish this, record
management will call EOV and EOV will use it's catalog interface to update the in
storage control blocks (i.e. AMDSB, ARDB, EDB) with the current boundaries of
the data set.

Use the cluster or alternate index name as the target of your VERIFY
command. Although the data and index components of a key-sequenced
cluster or alternate index can be verified, the timestamps of the two
components are different following the separate Verifies, possibly causing
further OPEN errors.

3.6 Useful documents

Here a list of the documents that can help you answer the three “Whats” of
problem resolution (which we introduced at the beginning of this chapter):

• VSAM messages explaining the problem, usually starting with the IDC
prefix. Those messages are usually produced (through the WTO macro)
Chapter 3. Recovery of VSAM data sets 137

by the caller of VSAM record management or catalog manager routines.
They are also produced by the caller of a system service routine, for
example, Open, Close, EOV, or IOS. These messages are associated with
a return code different from zero produced by the called routines.

In section B.4, “Symptoms (messages) from a broken data set” on
page 245, we list these messages. Here are a few of the most common:

- IDC3302I — Action error

- IDC3308I — Duplicate records

- IDC3314I — Out of sequence records, missing records, duplicate
records, no record found

- IDC3351I — VSAM logic I/O error RC156, RC24, or RC32

- IDC3350I — No record found or incorrect length

- IDC3009I — VSAM CATALOG RETURN CODE IS return-code —
REASON CODE IS IGGOCLaa — reason-code

• OS/390 system messages, generated by OS/390 components describing
errors beginning with the IEA prefix, associated with data set allocation,
master scheduler functions, and RTM. The IOS prefix is for IOS functions.
Usually those messages follow abends:

- IEC070I — RC32, RC202, RC104, or RC203

- IOS000I — Command reject (IOS errors in general)

• IDCAMS LISTCAT; refer to 3.9, “IDCAMS LISTCAT output fields” on
page 166.

• IGGCSIVS a program for SYS1.SAMPLIB accessing Catalog Search
Interface (CSI) produces a list of data set names defined in a given
catalog that reside on a specific volume. Refer to 4.3, “Catalog Search
Interface” on page 193, for more information.

• SMF records associated with VSAM; refer to 3.11, “SMF record types
related to VSAM data sets” on page 174. You can use our SMF 64 sample
program as described in that topic.

• The output message of IDCAMS EXAMINE; refer to 3.5.1, “EXAMINE
command” on page 134.

• The output messages of IDCAMS VERIFY; refer to 3.5.3, “VERIFY
command” on page 135.

• System LOGREC messages.

• A GTF CCW trace.

• DITTO/ESA output; refer to 1.10.3, “DITTO/ESA” on page 29.
138 VSAM Demystified

• DFSMSdss PRINT command; refer 3.10, “DFSMSdss PRINT command”
on page 174.

3.7 Broken data sets

By broken data sets, we are designating all the problems which may affect
the processing and the existence of your VSAM data sets. To simplify our
search for a solution to each problem, we can use the three “Whats” —
regarding occurrence, recovery, and avoidance.

Broken data sets can be caused by many different components and user
errors. When diagnosing these types of problems, the first thing that must be
done is to identify what is actually wrong with the data set. The first sign of a
problem is the VSAM or the OS/390 system messages. A single error often
generates numerous messages. You should focus your attention on the
return code presented and the companion explanation. This return code will
be the one passed by the component that first found the error. In most cases,
you will need additional documentation; refer to 3.6, “Useful documents” on
page 137.

In this section we group the errors by categories. However, this is not an easy
task. Some of the categories overlap and even interact with others. For
example, a bad channel program may be caused by an improper sharing,
which caused a structural damage.

In each subsection, we will cover the three “Whats”:

• What happened to cause this problem?

• What must you do in order to recover your data now?

• What must you do to avoid this problem in the future?

3.7.1 Lack of virtual storage
Following are messages that may indicate a lack or virtual storage:

IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS return-code

• 136 (Close): Not enough virtual storage was available in the program's
address space for a work area for Close

• 132 (Open): One of the following errors occurred:

- Not enough storage was available for work areas.

- The format-1 DSCB or the catalog cluster record is incorrect.
Chapter 3. Recovery of VSAM data sets 139

• 136 (Open): Not enough virtual-storage space is available in the
program's address space for work areas, control blocks, or buffers.

• 40 (I/O): insufficient virtual storage in the user's address space to
complete the request

IEC161I 001 [(087)]-ccc,jjj, sss,ddname,dev,ser,xxx, dsname,cat

3.7.1.1 What happened?
Due to the lack of virtual storage, an abend occurs. In this case, a symptom
dump may be included.

3.7.1.2 What to do for recovery?
Because the data set processing was interrupted (abended) in apparently
unknown circumstances, there are two cases:

• VSAM data set is being accessed by a subsystem as CICS, then CICS
was doing the Synchpoint, journaling, and is able to recovery your data by
rolling it back.

• VSAM data set being accessed by your program; then you should correct
the virtual storage problem and re-run the program (if possible) or restore
the backup and re-run the job.

Sometimes, the message is not the result of an abend. It can be an alert as
with IEC161I, where BLDVRP macro indicates that there was not enough
virtual storage to satisfy the request done by System Management Buffer
(SMB). SMB gets the available storage, and processing goes on.

3.7.1.3 What to do to avoid future problems?
Initially, read 2.6.8, “Region size” on page 55. If possible, increase your
region below or above, or decrease the common area below 16 MB, or force
your software to be in R31 mode. Use the SmartBatch function Data
Accelerator; refer to 2.8.1, “SmartBatch highlights” on page 121.

Determine if the VSAM buffers and their control blocks are below or above
the 16 MB line. If below, read 2.6.9.6, “Locating VSAM buffers above 16 MB”
on page 76 to learn how to move them above with integrity.

3.7.2 Initial loading problems
Following are messages that may indicate initial load problems:

• IDC3308I ** DUPLICATE RECORD xxx

The output data set of a REPRO command already contains a record with
the same key or record number.
140 VSAM Demystified

• IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS return-code

- 8 (I/O): You attempted to store a record with a duplicate key, or there is
a duplicate record for an alternate index with the unique key option

- 12 (I/O): You attempted to store a record out of ascending key
sequence in skip-sequential mode; record had a duplicate key; for
skip-sequential processing, your GET, PUT, and POINT requests are
not referencing records in ascending sequence; or, for skip-sequential
retrieval, the key requested is lower than the previous key requested.
For shared resources, the buffer pool is full.

- 116 (I/O): During initial data set loading (that is, when records are being
stored in the data set the first time it is opened), GET, POINT, ERASE,
direct PUT, and skip-sequential PUT with OPTCD=UPD are not
allowed. During initial data set loading, for initial loading of a relative
record data set, the request was other than a PUT insert.

3.7.2.1 What happened?
These messages point to problems with initial load or mass insertion (also
called skip sequential) of a VSAM cluster.

Initial load of your data set can be done by IDCAMS REPRO or by a program
of yours. Refer to 2.6.7, “Initial load option” on page 54, for more information.

When loading a VSAM KSDS data set, the logical records must be sorted in a
key sequenced order. No out-of-sequence or duplicated keys are allowed.
Refer to the above messages for a more detailed explanation about which of
these requirements were not fulfilled.

If the duplicated keys message applies to the initial load of an alternate index
(AIX) cluster, remember that for AIX is possible to have duplicated keys, but
in this case you should not use the UNIQUE parameter, which would
definitely cause this error.

Mass insertion resembles initial load in the sense that all the added logical
records also need to be sorted by a key field. The difference is that in mass
insertion, we are loading sequentially logical records to a data set which
already has previous data.

3.7.2.2 What to do for recovery?
Here, there is not a need for recovery. Your data is saved in the input file. It is
a matter of sorting and re-running the program.
Chapter 3. Recovery of VSAM data sets 141

3.7.2.3 What to do to avoid future problems?
After correcting the error, introduce a procedure in production to avoid having
the same error again.

3.7.3 Mismatch between catalog and data set
Following are the error messages which may indicate a mismatch between
catalog and data set information.

• IDC3351I ** VSAM OPEN RETURN CODE IS 108

108: Attention message: the time stamps of a data component and an
index component do not match. This indicates that either the data or the
index has been updated separately from the other. Check for possible
duplicate VVRs.

• IDC3351I DATA SET IS ALREADY OPEN FOR OUTPUT OR WAS NOT
CLOSED CORRECTLY

The data set is already OPEN for output by a user on another system, or
was not previously closed.

• IDC11709I DATA HIGH-USED RBA IS GREATER THAN
HIGH-ALLOCATED RBA

The data component high-used relative byte address is greater than the
high-allocated relative byte address. Supportive messages display
pertinent data, and processing continues.

• IDC11712I DATA HIGH-ALLOCATED RBA IS NOT A MULTIPLE OF CI
SIZE

The high-allocated relative byte address is not an integral multiple of the
control interval size.

• IDC11727I INDEX HIGH-USED RBA IS GREATER THAN
HIGH-ALLOCATED RBA

The index component high-used relative byte address is greater than the
high-allocated relative byte address.

• IDC3350I synad[SYNAD] NO RECORD FOUND from VSAM

3.7.3.1 What happened?
The data set may be intact, but the catalog information describing the data
set mismatch problems. It sometimes results in an open failure.

The most common discrepancies between the catalog and cluster are these:

• There were different time stamps between index and data components.
142 VSAM Demystified

• HURBA and HARBA not correctly updated, mainly caused by an abend,
without a normal close.

• Open-for-output bit on for a closed cluster; mainly caused by an abend,
without a normal close, or other task accessing from other system. Refer
to 3.7.10.2, “Abending task scenario” on page 157, for more information.

• RBAs fields in the VVR do not match the data set attributes, for example:

- If the RBA of the high-level index CI is corrupted, you are not be able to
perform direct requests against the data set.

- If the RBA of the sequence set index CI is corrupted, you are not able
to perform sequential access.

These last two discrepancies are not covered here; refer to 3.7.6,
“Structural damage” on page 147.

A LISTCAT output (or CSI report) can help with the documentation for
problem determination.

3.7.3.2 What to do for recovery?
IDCAMS VERIFY is a requirement in this type of problem. In this case,
VERIFY can correct HURBA; verify the open-for-output bit, compare data and
index time stamps.

• Different time stamps; Open does not abend your task, so continuation or
abend of the application depends on the program that issues the OPEN. In
general, it will keep processing, but another problem is likely to occur.

We suggest you run VERIFY (to be sure and document the mismatch) and
then run EXAMINE to guarantee no structural damage exists for KSDS
and VRRDS, with a test for the index option only (INDEXTEST).

Completion of EXAMINE without error proves that there are no structural
damages. If the index component shows damage at this point, it must be
restored before further use. Refer to 3.7.10.1, “Broken Index scenario” on
page 155, to get some information on doing that. Note that EXAMINE may
provide messages containing only informational data that may not require
restoring the cluster.

• HURBA and HARBA not correctly updated.

If the HURBA is not updated, when the data set is subsequently opened
and the user's program attempts to process records beyond end-of-data or
end-of-key range, a read operation results in a "no record found" error,
and a write operation might write records over previously written records.
To avoid this, you can use the VERIFY command which corrects the
catalog information.
Chapter 3. Recovery of VSAM data sets 143

• Open-for-output bit on for a closed cluster.

At next OPEN, VSAM implicitly issues a VERIFY command, when it
detects an open-for-output indicator on and issues an informational
message (maybe the one that you are seeing) stating whether the VERIFY
command is successful.

If a subsequent OPEN is issued for update, VSAM turns off the
open-for-output indicator at successful CLOSE. If the data set is opened
for input, however, the open-for-output indicator is left on.

3.7.4 Hardware errors
Following are some of the messages which indicate there may be hardware
errors:

IOS000I dev,chp,err,cmd,stat, dcbctfd,ser,mbe,eod, jobname,sens text

The system found an uncorrectable I/O error in device error recovery. Text is
one of the following:

• Channel interface, or protocol error

• Device has exceeded long busy timeout

• Permanent error — volume fenced

• Permanent error — device reported unknown message code = cde

• Channel control, data, chaining, program, protection, interface check

• Unable to obtain sense data from the device

IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS return-code

• 184 (Open): An uncorrectable I/O error occurred while VSAM was
completing outstanding I/O requests.

• 246 (Close): The compression management services (CMS) close
function failed.

• 184 (Open): An uncorrectable I/O error occurred while VSAM was
completing an I/O request.

• 245 (I/O): A severe error was detected by the compression management
services (CMS) during compression processing)

• 246 (I/O): A severe error was detected by the compression management
services (CMS) during decompression processing.

• 250 (I/O): A valid dictionary token does not exist for the compressed data
set. The data record cannot be decompressed.
144 VSAM Demystified

3.7.4.1 What happened?
Hardware I/O errors usually mean that the I/O hardware (channel, controller,
device) had a problem executing that I/O. For compressed VSAM data sets,
you may have hardware problems with the CPU compression assist function.

The first thing to do is break down the message to get more details on the
error. An IDCAMS LISTCAT (if possible) of the data set is also helpful to give
the attributes of the file in the logical 3390/3380, such as: the physical record
size, the device type and the CCHH of all extents. LOGREC output is also
valuable. A GTF CCW trace may be necessary to run DIAGNOSE on the
problem, however, for such tools, you may need to recreate the situation.

VERIFY IGGCSIVS is a program from SYS1.SAMPLIB accessing Catalog
Search Interface (CSI) which produces a list of data set names defined in a
given catalog that reside on a specific volume. Such a list might be helpful in
a recovery situation affecting that volume.

When accessing with VSAM macros, a VSAM data set where a physical error
was detected, the register 15 comes with return code equal to 12.

3.7.4.2 What to do for recovery?
In the case of a media error, do not use ICKDFS to run an Analyze and
Inspect function. The characteristics of the physical devices that make up the
RAID devices family do not allow the use of the ICKDSF commands that
perform installation, media maintenance and problem determination
functions, such as Install, Analyze, and Inspect.

If the problem happens with the compress assist feature, run the program
again, switching off data compression in the data class.

3.7.4.3 What to do to avoid future problems?
If the error is in the DASD controller, keep a log of such type of occurrences
to force a better quality of the manufacturer or change to other. Another
solution (for some media problems) is to implement RAID-1 dual copy (in the
same controller) or remote copy (in two controllers), mainly for your most
critical data, such as logs.

3.7.5 Bad data or bad channel program
A bad data or channel program may be indicated by the following message:

IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS return-code

• 140 (Open): The catalog indicates this data set has an incorrect physical
record size.
Chapter 3. Recovery of VSAM data sets 145

• 16 (I/O): Record not found.

• 88 (EOV): A previous extend error has occurred during EOV processing of
the data set.

3.7.5.1 What happened?
This problem may be pervasive, but in general, it is usually caused by two
major reasons:

• Duplicate VVRs

• A bad channel, causing data overlays and corrupting indexes

The existence of damaged or duplicate VVRs on a volume may cause data
sets to be overlaid with data from other data sets.

VSAM volume record (VVR) is a logical record within VSAM volume data set
(VVDS). VVDS is a data set that describes the dynamic characteristics of
VSAM and system-managed data sets residing on a given DASD volume.
Together with the BCS, it is a part of an integrated catalog facility.

There are quite a few things that can cause the channel program to be bad.
The most common causes of a bad channel program is that the data that
describes the data set is bad. If a bad VVR is picked up at Open time, VSAM
may try to access cylinder and tracks that do not belong to the data set
getting various I/O errors.

If another program overlays the VSAM data set, this can cause the channel
program to fail at that spot where the other data exists. For instance, if the CI
size of the VSAM file that is broken is 4 KB, the channel program is built to
read records of that size. If another program has overlaid the file with records
of, say, 16 KB size, the channel programs for the record size of 4 KB fails on
all cylinder/tracks/heads that do not have this record size. This situation is
usually referred to as bad data.

Theoretically, system code problems can cause VSAM to build channel
program incorrectly, or in some cases they may be built correctly, but they are
getting modified incorrectly and redriven by ERP or even third party products.
Luckily, these reasons are not too common, even with new device types.

In regard to corrupted indexes, refer to 3.7.6, “Structural damage” on
page 147.

With problems like these, it is important to get as much information about the
data set as you can before the customer restores it. We suggest using:

• LISTCAT or CSI.
146 VSAM Demystified

• DFSMSdss (PRINT command) or Ditto to print the 3390/3380 logical
cylinder/track/head that the I/O error is occurring. It can indicate whether
there is any data at all on the track, or if the data that is there belongs to a
different data set.

• SMF records, mainly the type 6x connected to catalog and VSAM data
sets.

After the data set has been recovered, the only “history” that can be
EXAMINE’d is the SMF records. If the problem “clears up” after the data set is
closed, but without the data set being recovered, you might suspect a
problem with an internal control block being overlaid, rather than something
on DASD.

3.7.5.2 What to do for recovery?
This overlay is a hard failure and the data set has to be manually restored
from a backup. Often, in this case, the bad data itself gives a clue as to what
data set or application has caused the overlay. Trying to avoid the restore for
a bad KSDS data component, you may try to skip past the bad data records,
and recover only those records that can be properly read.

A DIAGNOSE command even after the data set has been recovered can
check for this problem (since only a DELETE VVR can get rid of an orphan
after one occurs). Luckily, many enhancements have been introduced to
Catalog and Open processes in the last few years to check for duplicate
VVRs at OPEN time so this should be less of a problem.

3.7.5.3 What to do to avoid future problems?
Experience has shown that the majority of such errors are caused by
improper sharing. If you are sharing your VSAM data set, refer to 3.7.7,
“Improper sharing” on page 150.

Because such types of errors may also be caused by system errors, you may
want to investigate the possibility of APARs and PTFs related to the problem.

3.7.6 Structural damage
Following are messages that may indicate structural damage:

IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS return-code

• 128 (Close): Index search horizontal chain pointer loop encountered.

• 190 (Open): An incorrect high-allocated RBA was found in the catalog
entry for this data set. The catalog entry is bad and will have to be
restored.
Chapter 3. Recovery of VSAM data sets 147

• 76 (Open): Attention message: The interrupt recognition flag (IRF) was
detected for a data set opened for input processing. This indicates that
DELETE processing was interrupted.

• 4 (I/O): End of data set encountered (during sequential retrieval), or the
search argument is greater than the high key of the data set. Either no
EODAD routine is provided, or one is provided and it returned to VSAM
and the processing program issued another GET.

• 32 (I/O): An RBA specified that does not give the address of any data
record in the data set

• 128 (I/O)): A loop exists in the index horizontal pointer chain during index
search processing.

• 144 (I/O): Incorrect pointer (no associated base record) in an alternate
index.

• 156 (I/O): An addressed GET UPD request failed because the control
interval flag was on, or an incorrect control interval was detected during
keyed processing. In the latter case, the control interval is incorrect for
one of the following reasons:

- A key is not greater than the previous key.
- A key is not in the current control interval.
- A spanned record RDF is present.
- A free space pointer is incorrect.
- The number of records does not match a group RDF record count.
- A record definition field is incorrect.
- An index CI format is incorrect (logical I/O error)

3.7.6.1 What happened to cause this problem?
KSDS or VRRDS VSAM data set organizations can “break” in more ways
than other data sets because they have an index component with logical
pointers to other data and index CIs. If these pointers become corrupted, data
can be lost or duplicated.

Also, much structural information about such data sets is located in the ICF
catalog. For example, two RBAs fields in the VVR are very important in
accessing a KSDS data set, for example:

• If the RBA of the high-level index CI is corrupted, you are not be able to
perform direct requests against the data set.

• If the RBA of the sequence set index CI is corrupted, you are not able to
perform sequential access.
148 VSAM Demystified

Refer to 3.9, “IDCAMS LISTCAT output fields” on page 166, for more
information about RBA data in the VVDS catalog.

Then, if these fields are corrupted, errors may prevent you from accessing
the data even though the data is intact. Also, it is possible that the index CI’s
horizontal chain is destroyed, inhibiting the access to the data. One common
way these fields can get corrupted is due to overlays of the AMDSB control
block while the data set was open, which then get updated back to the VVDS
at close time. Another way is through improper sharing of the data set during
initial load mode processing.

Because these fields are stored in the ″Statistics Block″ (AMDSB), jobs that
only opened the data set for input still update this information at close time
and for that reason do not dismiss any possibilities just because the job was
not updating the file.

SMF records are very helpful when diagnosing VVR damage. By investigating
the SMF records (for example, type 60, 62 and 64) from all systems, improper
access of the data set can be identified as well as the time frame of the
corruption.

3.7.6.2 What to do for recovery?
When dealing with KSDS/VRRDS, it is crucial that EXAMINE is run on the
data set as part of the diagnosis. Also, the sooner the EXAMINE is run after
the data set is broken, the better, since some types of damage can actually
cause more breakage until the data set is so badly broken it is impossible to
tell what actually happened first. Remember that the EXAMINE command
provides details about the nature of data set damage.

Sometimes, the IDCAMS DIAGNOSE command can be used to check the
data set for structural error in the catalog itself.

When losing the index in a KSDS/VRRDS, one possible recovery path is to
read the data (in physical sequential mode) via its data component. Here you
may use an assembler program (MACRF=ADR in ACB and OPTCD=ADR in
RPL), or by IDCAMS Repro. Then, classify by the key and use an IDCAMS
Define and REPRO to recreate the KSDS. Refer to 3.7.10.1, “Broken Index
scenario” on page 155 for more details on that.

3.7.6.3 What to do to avoid future problems?
Experience has shown that some of such errors are caused by improper
sharing. If you are sharing your VSAM data set, refer to 3.7.7, “Improper
sharing” on page 150.
Chapter 3. Recovery of VSAM data sets 149

Because such types of errors maybe caused by system errors, you may want
to investigate the possibility of APARs and PTFs related to the problem.

3.7.7 Improper sharing
Following are messages that may indicate improper sharing:

IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS return-code

• 88 (Open): A previous extend error has occurred during EOV processing
of the data set.

• 96 (Open): Attention message: an unusable data set was opened for input.

• 116 (Open): Attention message: the data set was not properly closed or
was not opened. If the data set was not properly closed, then data may be
lost if processing continues.

- The data set was not properly closed.

- The data set is opened for output on another image.

• 16 (I/O): Record not found.

• 20 (I/O): Record already held in exclusive control by another requester.

• 28 (I/O): Data set cannot be extended because VSAM cannot allocate
additional DASD space.

• 236 (I/O): Validity check error for SHAREOPTIONS 3 or 4.

IDC11705I INDEX RECORD CONTAINS DUPLICATE INDEX POINTERS
pointer-value

3.7.7.1 What happened?
Improper sharing is one of the most common causes of broken data sets.
This section covers some of the things to check for, to make sure the share
options are proper. Refer to 1.11.3.3, “Share options” on page 36 to get
information on share options. Here are some causes of sharing problems:

• Sharing a data set across regions (cross-region) or across systems
(cross-system) without using proper enqueuing procedures to protect data
set integrity. For shareoptions shr(3 3) shr(4 3) shr(3 4) see related
information in OY36328.

• Sharing a data set across systems — even using the appropriated share
option — but without propagating ENQ name SYSVSAM around the GRS
ring. This is the *most* common user error. It results in duplicate index
pointers in the high level index records. See message IDC11705I.
150 VSAM Demystified

ENQ on SYSVSAM is the mechanism by which VSAM ensures that only
one ACB is open for output. If GRS is not passing this resource name to
all systems in the complex (for example, they have SYSVSAM in the
exclusion list; see the MVS/ESA Planning Global Resource Serialization
Guide), write integrity can be lost.

• Sharing a data set across systems and running explicit VERIFY on one
system while the other system still has the data set opened for output.
Consider the following scenario:

A data set is used for CICS on-line applications during the day and batch
processing on another system at night. It is assumed that they never have
the data set opened at the same time. If there is any delay in closing the
data set on one system before the other issues an explicit VERIFY on the
data set (even before opening for input), index damage can result from the
change in the high used RBA.

• When a data set is defined using the model parameter, and the original
data set has SPEED as an attribute of the index, data set damage can
occur. VSAM does not support speed as an attribute for the index (speed
is only supported for the data).

• Perhaps there is not enough primary space left, and a secondary
allocation request is attempted to increase the size of a data set while
processing with SHROPT=4 and DISP=SHR. Then, VSAM end-of-volume
processing acquires new extents for the VSAM data set, and updates the
new extent information on the critical control block data in common
storage so that this new space is accessible by all regions using this
VSAM data set.

Now, if an abend or unexpected error occurs, which prevents this space
allocation from being completed, all regions are prevented from further
extending the data set. To obtain additional space, you must close the
VSAM data set in all regions, then reopen it.

• Another area related to broken data sets that is specific to CBUF
processing is the VSI control block. Every time a data set is opened on a
system for CBUF processing, a VSI is built for the data set and added to
the VSI chain. This control block is then updated by the user to
communicate information from one region to another. If the user does this
improperly, a broken data set can result. Refer to 4.2.7, “Control Block
Update Facility (CBUF)” on page 192, for more information.

Documentation is of paramount importance to address sharing problems. The
necessary documents should be obtained at each system (or address space)
accessing the troubled data set. The major document needed here is the
Chapter 3. Recovery of VSAM data sets 151

IDCAMS LISTC or CSI report. List the catalog entry for the affected data set
to show the allocation and RBA data (beware OY61232).

The SMF 62 and 64 records can help you determine if the users have the
data set open for output from different applications at the same time. A
common user error in this area is applications or ISV products that were not
intended to be run from multiple systems (and so they have no logic to
serialize updates), but the customer using them in this manner.

3.7.7.2 What to do for recovery?
Following is a list of recovery options:

• Use the Access Method Services VERIFY command to attempt to close
the data set properly. In a cross-system shared DASD environment, a
return code of 116 can have two meanings: If VERIFY processing then
successfully closes the data set, VERIFY processing issues condition
code 0 at the end of its processing. List the catalog entry again. Any
change in the data or index component HURBA indicates that the explicit
VERIFY was needed and may resolve the damage to the data set.

• Execute the IDCAMS EXAMINE command on the data set. Completion of
EXAMINE without error will prove that damage did not occur in a previous
job. If the data set shows damage at this point, it must be restored before
further use.

• Proceed with the application job execution.

• Execute IDCAMS EXAMINE on the data set when the job completes

• If damage to the cluster has occurred, run EXAMINE on SMF records from
all systems which do have the ability to access the DASD volume. If
shared access to the data set has occurred, correct or eliminate the
contention for the data set

3.7.7.3 What to do to avoid future problems?
You should issue the VERIFY command every time you open a VSAM cluster
that is shared across systems or address spaces. Read carefully 4.2,
“Sharing VSAM data sets” on page 183 and use all the serializing techniques
to avoid the structural damage and the data integrity of your data set.

3.7.8 Mismatch between catalog and VTOC
In this book we do not cover much catalog recovery; however, some of the
catalog problems are mentioned as the ones associated with the IDC3009I
message. Refer to 3.8, “IDC3009I message” on page 159, where a more
detailed description of the return and reason codes from this message are
152 VSAM Demystified

presented. Refer also to 3.7.11, “Recovering ICF catalogs” on page 158,
where you will find more information about the subject.

IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS return-code

• 104 (Open): The time stamp of the volume on which a data set is stored
does not match the system time stamp in the volume record in the catalog;
this indicates that extent information in the catalog record may not agree
with the extents indicated in the volume's VTOC.

• 132 (Open): One of the following errors occurred.

- Not enough storage was available for work areas.

- The format-1 DSCB or the catalog cluster record is incorrect.

• 200 (Open): Volume is unusable.

• 240 (Open): Format-4 DSCB and catalog time stamp verification failed
during volume mount processing for output processing.

IDC3009I VSAM CATALOG RETURN CODE IS return-code — REASON
CODE IS IGGOCLaa — reason-code.

3.7.9 VSAM does not produce expected output
Incorrect output failures can be identified by the following results:

• Expected output is missing.
• Output is different than expected.
• Output should not have been generated.
• System indicates damage to the VTOC or VTOC index.
• ISMF panel information or flow is erroneous.

Incorrect output can be the result of a previous failure and can often be
difficult to analyze because the component affected might not be the one that
caused the problem. Review previous messages, abends, console logs, or
other system responses. They could indicate the source of the failure.

3.7.9.1 Accumulate as much information as possible.
It can help you isolate or resolve your problem, and the IBM Support Center
will request it if trap or trace information is needed:

• When was the problem first noticed?

• How was the problem identified (good output versus bad output)?

• Were any system changes or maintenance recently applied? For example,
a new device, software product, APAR, or PTF?
Chapter 3. Recovery of VSAM data sets 153

• Does the problem occur with a specific data set, device, time of day, and
so forth?

• Does the problem occur in batch or TSO mode?

• Is the problem solid or intermittent?

• Can the problem be re-created?

• EXAMINE the system and console logs for failure-related abends,
messages, or return codes. A damaged VSAM data set can also cause
incorrect output.

• Add any failure-related return codes to the keyword string, exactly as the
system presents them. You can also add the abend or message
type-of-failure keywords to the incorrect output keyword string to define
the symptoms more closely:

• Determine whether failure-related record management return codes and
reason codes exist.

VSAM provides return codes in register 15 and reason codes in either the
access method control block (ACB) or the request parameter list (RPL).
Reason codes in the ACB indicate VSAM open or close errors. Reason
codes in the RPL indicate VSAM record management error indications
returned to the caller of record management. Reason codes returned to
the caller of record management in the RPL indicate VSAM record
management errors.

• Determine whether you have a damaged VSAM data set.

Some incorrect output failures involve a damaged VSAM data set. To
determine whether you have a damaged data set, use the IDCAMS
EXAMINE command as described in the chapter on functional command
format in DFSMS/MVS Access Method Services for ICF and the chapter
on checking a VSAM key-sequenced data set cluster for structural errors
in DFSMS/MVS Using Data Sets. The EXAMINE command provides
details about the nature of data set damage. If these service aids indicate
that the data set is not damaged, inform the IBM Support Center if you call
for assistance. If they indicate that the data set is damaged, keep a copy
of the output for possible use by the IBM Support Center. Be prepared to
describe the type of data set damage. You should attempt to recover the
data set and rerun the failing job to determine whether the problem is
resolved.

3.7.10 Recovery scenarios
Following are some real life scenarios covering the rise and fall of a VSAM
data set.
154 VSAM Demystified

3.7.10.1 Broken Index scenario
In this scenario, you observe the following conditions:

1. You have a program which opens a KSDS data set for update. The access
argument is through RBA. However, by mistake, someone has prepared
JCL pointing to the index name instead of cluster name or data name.

2. The program finishes with a return code equal to zero, but with an
unknown damaged index. However, the index time stamp is now different
from the one in the data component, as LISTCAT shows. Nevertheless,
RACF does not prohibit this action, because the user is the owner of the
cluster.

3. The next time that you open the cluster or the data, the following happens:

- At open, the message IEC161I 058(018)-061 is issued and the OPEN
return code is 4. The processing continues.

//*JCL -------------------------------------
//SEQ EXEC PGM=TSTIDX
//VSAM DD DSN=KSDS.K4REP.INDEX,DISP=SHR

TSTIDX PROGRAM:
ACB,DDNAME=VSAM,MACRF=(ADR,SEQ,OUT)
RPL,ACB=(R2),OPTCD=(ADR,SEQ,UPD,MVE)

SYSOUT MESSAGE:
JOBNAME STEPNAME PROCSTEP RC
TSTIDX SEQ 00

LISTCAT ENTRY(‘KSDS.K4REP’) ALL:
DATA: SYSTEM-TIMESTAMP: X'B3E245958A0845C4'
INDEX: SYSTEM-TIMESTAMP: X'B3E278BEC0D91601'
Chapter 3. Recovery of VSAM data sets 155

- Going on with the processing, in a GET or PUT, the program receives a
return code 8, reason code X’9C’, indicating that an invalid control
interval was detected. The program reading the data issues a message
indicating the error. When the program is IDCAMS, the processing
stops and the messages below are issued in the SYSPRINT ddname
file. If the data set is open for output, the timestamp is corrected, but
the I/O error remains, once the index is damaged.

4. You run an EXAMINE IDCAMS command, getting back the messages
shown. In our test, we caused the error by filling the first control interval
with X‘00’:

IEC161I 058(018)-061:

058 The time stamp for the index does not match the time stamp for
the data set. This could occur if the data set was updated
without the index being open.

System Action: OPEN processing continues. The error flags
in the ACB (access method control block) for the data set are set to
108.

Programmer Response: You can continue to process the data
set, but errors can occur if the data set and index do not
correspond. Check for possible duplicate VVRs.

IDC3300I ERROR OPENING KSDS.K4REP
IDC3351I ** VSAM OPEN RETURN CODE IS 108
IDC3302I ACTION ERROR ON KSDS.K4REP
IDC3351I ** VSAM I/O RETURN CODE IS 156 - RPLFDBWD = X'D708009C'
IDC31467I MAXIMUM ERROR LIMIT REACHED.
156 VSAM Demystified

5. For recovering the index:

- Use the REPRO Command to copy just the data component of the
KSDS. Specify the data component name (not the Cluster Name) in the
REPRO INFILE parameter.

- DELETE and reDEFINE the damaged Cluster.

- REPRO from the Sorted Sequential File to the newly defined Cluster.
Record Management will rebuild the Index Component.

Note that this method does not work for a VSAM Catalog, Integrated Catalog
(ICF), or for a Spanned KSDS.

3.7.10.2 Abending task scenario
At task abend, RTM does not properly close the VSAM data set, then:

• Buffers are not flushed (with the exception of cross systems shareoptions
4) and the HURBA is not updated in the catalog. In Language Environment
there is an option (TRAP ON) which forces the close (with flush and
HURBA actualization), using a STAE exit.

If the HURBA was not updated, when the data set is subsequently opened
and the user's program attempts to process records beyond end-of-data or
end-of-key range, a read operation results in a "no record found" error,
and a write operation might write records over previously written records.
To avoid this, you can use the VERIFY command, which corrects the
catalog information. For additional information about recovering a data
set, see DFSMS/MVS Managing Catalogs, SC26-4914-04.

• If the data set was opened for output, the open-for-output indicator is left
on. In this case, at next Open, VSAM implicitly issues a VERIFY
command, when it detects an open-for-output indicator on and issues an
informational message stating whether the VERIFY command is
successful.

INDEXTEST BEGINS
HIGH-LEVEL INDEX CI EXPECTED BUT NOT ACQUIRED
CURRENT INDEX LEVEL IS 3
INDEX CONTROL INTERVAL DISPLAY AT RBA/CI 245760 FOLLOWS
000000 00000000 00000000 00000000 00000000 00000000 00000000 0000000
00 *................................*
000020 00000000 00000000 00000000 00000000 00000000 00000000 0000000
...

ERROR LOCATED AT OFFSET 00000010
MAJOR ERRORS FOUND BY INDEXTEST
LASTCC=8
Chapter 3. Recovery of VSAM data sets 157

If a subsequent Open is issued for update, VSAM turns off the
open-for-output indicator at successful Close. If the data set is opened for
input, however, the open-for-output indicator is left on. Refer to 3.7.3,
“Mismatch between catalog and data set” on page 142, for more
information.

3.7.11 Recovering ICF catalogs
A sequence of tasks to recovery an ICF damaged catalog follows.

3.7.11.1 Recovering damaged BCS entries
• Remove the sphere or base record, if it exists.

The damage detected might not be in a sphere or base record. If it is not,
the entry name of the sphere or base record is indicated in messages
IDC21364I and IDC21365I.

• Remove any remaining association records.

You can reexecute the DIAGNOSE command after you remove the sphere
or base record to identify any unwanted truename or association entries in
the BCS. You can remove these entries by using the DELETE command
with the TRUENAME parameter.

• Reintroduce the removed entries into the catalog.

After the damaged entries have been removed, you can redefine the data
sets. For VSAM and SMS-managed non-VSAM data sets, you should
specify the RECATALOG option of the DEFINE command.

If you are recovering generation data group entries, use the same procedure.
However, you must reintroduce the current generation data sets into the
catalog in the proper order after the generation data group has been
redefined. You can use the LISTCAT command to determine the current
generation data sets.

3.7.12 Recovering damaged VVDS entries
• Remove the entries in the BCS for the data set, if they exist.

Before the damaged VVDS records can be removed, you must remove the
entries in the BCS. See 3.7.11.1, “Recovering damaged BCS entries” on
page 158 for more details on removing BCS entries.

• Remove the damaged VVDS records.

After you have removed the BCS entries, you can remove the VVDS
records by using the Delete command and specifying VVR or NVR. Delete
VVR or NVR also removes the Format 1 DSCB from the VTOC.
158 VSAM Demystified

• Recover the data set from a backup copy.

If a backup copy of the data set does not exist and the data set can be
opened, you can attempt to recover some of the data. Depending on the
extent and type of damage in the VVDS record, you might be unable to
recover any data. The data that you do recover might be damaged or out of
sequence.

3.8 IDC3009I message

When working with catalogs and VSAM data sets, the IDC3009I message is
probably the most common message you receive. IDC3009I is issued as a
result of a catalog error or exceptional condition involving a catalog.

Following is the format of this message:

IDC3009I VSAM CATALOG RETURN CODE IS return-code — REASON
CODE IS IGGOCLaa — reason-code

The message specifies a return code and a reason code, and they are
described in OS/390 MVS System Messages, Vol 3 (GDE-IEB), GC28-1786.
The return codes are as listed in Table 15. The table is not intended to
replace the messages manual, but rather to serve as a quick reference.
Chapter 3. Recovery of VSAM data sets 159

Table 15. IDC3009I message

Return
Code

A brief explanation:

4 Error while performing open/close to a VSAM catalog. See reason code, can be either a small
region size.

8 The specified entry does not exist if locate was the action or
the entry already exists, if action is one which adds an entry to a catalog

10 An incorrect record type was found in the catalog

12 The component was not found. It can be an AIX, a data or an index, depending on reason code

14 Catalog cell not found.: Run the Access Method Services DIAGNOSE command to check for
additional information.

16 Request is not supported for SMS managed volumes

18 ALTER for a backup or migrated data set failed.

20 VSAM catalog has run out-of-space

22 Catalog field vector table (FVT) is zero or an incorrect FVT field was found.

24 Permanent read error in VSAM catalog.

26 ICF catalog: VSAM record management error (catalog record too big or too small)

28 Permanent I/O error in VSAM catalog. Messages IEC331I, IEC332I, and
IEC333I have been printed to aid in determining the cause of the error and where the error
occurred.

30 Automated Tape Library DataServer (ATLDS) processing error

32 Error in the VSAM catalog parameter list and indicates an internal error in Access Method
Services

36 Data set not found or DSCB indicates a VSAM data set

38 Error found in a catalog installation error (user or DFHSM supplied) while processing a
CATALOG, INDEX or LOCATE macro. If DFHSM, messages (ARCxxxI) are issued before.

40 Two 2 or more tasks are modifying a catalog entry, causing it to be extended in size, and one
task finds that it was unable to specify sufficient virtual storage for catalog management's new
requirements.

42 A DADSM error occurred on branch entry to DADSM back end (DADSM rename, locate or
scratch, according to reason code).

44 The caller's work area is too small

48 Incorrect VSAM catalog function
160 VSAM Demystified

50 An error has been detected in VVDS manager error

52 Permanent I/O error on user volume. An attempt to run a direct execute channel program
(EXCP) write of a DSCB to the VTOC failed. The reason codes are the event control block
(ECB) completion codes returned after the EXCP write and you can the meaning in “Event
Control Block Fields”,DFSMS/MVS DFSMSdfp Advanced Services, SC26-4921

54 Incorrect use of JOBCAT or STEPCAT with SMS data sets

56 A security verification failed

58 Error while reading a DSCB into a work area. Reason code is DADSM OBTAIN Return Code
and you can find in “Return Codes from OBTAIN”, DFSMS/MVS DFSMSdfp Advanced
Services, SC26-4921.

60 Incorrect entry type for requested action

62 Error while initializing the extension of a data set. The reason codes are the complement of the
error codes returned from the DADSM extend routine; refer to DFSMSdfp Diagnosis
Reference, LY27-9606

64 VSAM catalog cannot find either a data or an index entry which is associated with a cluster or
alternate index entry.

66 Bad DADSM parameter list. The reason code is the DADSM return code, and you can find in
DFSMSdfp Diagnosis Reference, LY27-9606.

68 No space is available on the user volume for the ICF catalog. Only the
primary volume will be used.

70 A generation data set component was not found in the GDG sphere record.

72 The user volume is not mounted. The reason codes are from VSAM open/close/end-of-volume,
volume mount and verify routine IDA0192V.

74 catalog Cell not found. Different reasons codes from those specified in return code 14.

76 No unit available for mounting or volume not mounted

78 Subrecord move error. It can be: Catalog management was unable to obtain enough virtual
storage to contain the catalog record with the addition of the subrecord or verification record
was not within the length range of 1 to 256.

80 The object specified in the RELATE parameter of a DEFINE command does not exist, or is
improper for the type of object being defined.

82 The number of data set entries passed exceeds the allowed maximum for the catalog name
locate.

Return
Code

A brief explanation:
Chapter 3. Recovery of VSAM data sets 161

84 Date error: a DELETE to a data set with an unexpired purge date and PURGE was not specified
or there are conflicting date format (rc=2).

86 Recatalog error, reason vary according to reason codes

88 Error with a catalog recovery area (CRA) define operation: The total space specified was not
able to contain the size specified for the catalog and
the one cylinder of space required for the CRA.

90 Delete error

92 The maximum number of extents was reached

94 A DADSM OBTAIN request failed during a VSAM catalog delete request. The reason code is
the OBTAIN return code and you can find out its meaning in “DADSM OBTAIN Function Return
Codes”, DFSMSdfp Diagnosis Reference, LY27-9606.

96 An error occurred in specifying key length, key position or record size for an alternate index or
spanned cluster.

98 An unusual condition occurred during an ALTER name of a unique or non-VSAM data set. The
reason code is status byte returned by the DADSM RENAME function. See the meaning in
DFSMSdfp Diagnosis Reference, LY27-9606, “Status Codes from RENAME”

102 A DADSM SCRATCH request failed during a VSAM catalog delete request. for a unique or
non-VSAM data set. The reason code is status byte returned by the DADSM SCRATCH
function. See the meaning in DFSMSdfp Diagnosis Reference, LY27-9606, “Status Codes
from SCRATCH”

104 A DEFINE command is attempting to define a second VSAM master catalog when a VSAM
master catalog already exists and is open.

106 A format-4 DSCB processing error was encountered

108 An incorrect field name was found in the field parameter list. The field name passed by AMS
does not exist in the VSAM catalog management dictionary. The message indicates that the
caller's AMS release level or maintenance level is different from the CATALOG level that is
being called.

110 Unable to modify or delete RACF profile. It does not exist (but has RACF indicator (reason 4)
or a rename processing for a RACF-protected data set failed because as a result of the new
name, the data set cannot be defined to the security subsystem.

112 Incorrect Catalog field parameter list(FPL).

114 As a result of an IMPORT, IMPORTRA, or DEFINE command, VSAM has attempted to establish
a RACF profile for a cluster/alternate index, data, or index object (reason codes 0, 4, and 8
respectively). This failed because a profile with the same name already exists.

Return
Code

A brief explanation:
162 VSAM Demystified

116 VSAM catalog records are incorrect. The reason code explain for what kind of object the record
can not be obtained.

118 The data set name is ineligible for RACF definition. User does not have authority (reason code
0) or RACF inactive (reason code 12)

120 Attempt to modify the non-existent or system field. This is a system error.

124 Incorrect control interval number

126 Alter new name of a GDS, non-VSAM or cluster failed because an ACS service returns a
non-zero return code. ACS reason code = catalog reason
code + 1000. services reason codes from 1000 to 1255. The ACS
services return and reason codes are documented in the DFSMSdfp Diagnosis Reference,
LY27-9606.

128 A user-provided storage is outside the user region. Probable system error.

130 An ALTER RENAME recatalog error. Reason code explains why.

132 Incorrect pointer value in argument list. Probable system error.

136 Required parameters not supplied. Probable system error.

138 DADSM RENAME error. Reason code is the volume status code returned from DADSM.

142 DADSM OBTAIN error. Reason code is the return code from OBTAIN and you find in DFSMSdfp
Advanced Services, SC26-4921.

144 An incorrect entry name format or the name has an initial character as a numeric or used a
restricted name. See reason code.

148 Volume already owned by another VSAM catalog. Specify a different volume or use the Access
Method Services ALTER REMOVEVOLUMES command to reset the volume ownership if a
catalog should not own the volume.

150 Name length error for an SMS construct. Storage class (reason code 2) or data class (4) or
management class (6)

152 A non-empty catalog cannot be deleted. If the catalog and all of its
entries are to be deleted specify the FORCE parameter on the Access Method Services
DELETE CATALOG command.

156 The volume does not contain a data space for another VSAM data set. There is insufficient
space in the data spaces allocated on the volume to satisfy a request for suballocation.

160 DELETE space is requested for a volume containing a catalog. See explanation and
programmer response in reason code.

Return
Code

A brief explanation:
Chapter 3. Recovery of VSAM data sets 163

164 There is insufficient virtual storage available for VSAM catalog management. Increase the
region size available to the step.

168 Unsupported device type.

172 A DEFINE command specifies the name of a data set, with the UNIQUE attribute, but there is
already a data set on the specified volume with that name.

176 There is no space in the VTOC for a DSCB. Delete any unneeded data sets or data spaces from
the volume or recreate the volume with a larger VTOC.

178 An error occurred during ICF catalog processing of a VSAM partial release request.

180 Data space name not found. Probable system error. The catalog or a volume may have been
totally or partially destroyed.

182 Bad DADSM UPDATE parameter list. The reason code is the Volume status code from DADSM.
You can see a volume status using ISMF.

184 The data set is currently open and cannot be deleted or altered.

186 Error attempting to lock a catalog or access a locked catalog.

188 Catalog unavailable. See return code in the messages manual.

190 Authorization error on a facility class function applied to SMS data sets. The user need read
access authority to 'STGADMIN.IGG.LIBRARY'.

192 Maximum logical record length specified is greater than 32,761 for a non-spanned data set.

194 An error occurred during multi-level alias (MLA) facility processing. See reason code in the
message manual.

196 The data component control interval size specified is greater than 32,767.

198 An attempt has been made to use an unsupported feature. Related to a UCB’s device defined
above 16M, which resides a VSAM catalog.

200 The specified or defaulted control interval size of the index component is greater than the
maximum block size of the index device. Reduce the control interval or use a device with a
larger maximum block size.

202 Storage management subsystem call error. Redefine the data set with a management class
with no retention limit or with a specified retention value equal to or exceeding the date specified
in the ALTER command.

204 Key specification extends beyond end of maximum logical record. Reduce the key length,
change the key position, or increase the logical record length.

208 The buffer space specified is too small. Do not specify BUFFERSPACE, let the default value.

Return
Code

A brief explanation:
164 VSAM Demystified

210 Subsystem call error. Reason code is the return code from Subsystem call.

212 Control interval size calculation unsolvable. See reason code.

214 Subsystem call error. Reason code is the return code from Subsystem call

216 The volume's VTOC is not interpretable. An incorrect VTOC was deleted during update extend
processing for a VSAM data set. Restore the volume in order to correct the VTOC.

220 A DOS VTOC cannot be converted to an OS VTOC. Restore the volume in order to correct the
VTOC.

222 Alter new name of a GDS, non-VSAM or cluster failed because an ACS service returns a
non-zero return code. ACS reason code = catalog reason code + decimal 256. ACS services
return and reason codes are documented in DFSMSdfp Diagnosis Reference, LY27-9606.

224 A field in a catalog entry has exceeded the maximum allowable number of repetitions. For
example, trying to add more than 255 volumes or more than 125 alternate indexes in the
upgrade set.

226 The caller is not authorized to perform the requested function. The caller must be running in key
0 - 7, must be in supervisor state, or must be APF authorized.

228 An error occurred while processing an Enhanced Catalog Sharing (ECS) request. Refer to
reason code in the message manual to correct the problem

230 VSAM catalog retrieve of a control interval failed to get a low range record from the VSAM
catalog. Probable system error.

232 An error was encountered while VSAM Catalog Management was performing SMF processing.
Use the reason code as a return code to IDC3009I to find out the reason of the error.

234 End of data encountered while reading the low data key range of the VSAM catalog. Probable
system error.

236 An error was encountered in space-map. This condition arises when the catalog's volume entry
is incorrect. Reconstruct the volume entry record. If that is not possible, restore the catalog.

238 No user catalog entry in the master catalog for Convert Volume processing.

240 Required DD statement not supplied. See reason code in the message manual

242 A physical I/O error occurred trying to erase the data set being deleted. The reason code
correspond to the VSAM Record Management error codes.
See “Record Management Return and Reason Codes” in DFSMS/MVS Macro Instructions for
Data Sets, SC26-4913. Run the job again with the
NOERASE option. The data set cannot be deleted.

Return
Code

A brief explanation:
Chapter 3. Recovery of VSAM data sets 165

3.9 IDCAMS LISTCAT output fields

In the ICFcatalog, VSAM maintains special RBA, CI, and Key values together
with time stamps, which are very important in accessing a VSAM cluster.
The most important ones are located in the VVR AMDSB in the VVDS cell
and are updated only at Close time.

IDCAMS LISTCAT command displays this information, which is key to
diagnosing what caused the error. The screen below shows some JCL you
need in order to issue the LISTCAT command via BATCH. You can issue the
same command under TSO/ISPF.

244 Erase action failed. The VSAM Catalog Management is unable to open the VSAM data set
being deleted. The reason codes correspond to the VSAM
OPEN error codes. See “OPEN Return Codes” in DFSMS/MVS Macro Instructions for Data
Sets, SC26-4913. Alternatively, you run the DELETE command again with the NOERASE
option.

246 CAS service task abended or detected an abnormal condition. See reason code in the
messages manual.

248 A function requires a volume that is not owned by the VSAM catalog being
used.

250 VSAM Record Management has found a logical error during erase processing while deleting a
VSAM data set. The reason codes correspond to the VSAM record management logical error
code. See “Record Management Return and Reason Codes” in DFSMS/MVS Macro
Instructions for Data Sets, SC26-4913. Alternatively, you run the DELETE command again
with the NOERASE option.

254 An error was encountered during catalog reorientation. The reason code indicates in what part
the error was found: close (reason code 0), open (2), allocation (4) or an unexpected error (6).

Note: Reason codes, explanations, system actions and programmers response are described in OS/390
MVS System Messages, Vol 3 (GDE-IEB), GC28-1786, under IDC3009I message.

Return
Code

A brief explanation:
166 VSAM Demystified

The output from the LISTCAT command is:

1IDCAMS SYSTEM SERVICES TIME:
21:15:46 04/20/00 PAGE 1
0

LISTC ENTRY(DAWN.KSDSEXG) ALL
00044403
0CLUSTER ------- DAWN.KSDSEXG

IN-CAT --- MCAT.SANDBOX.R9.VSBOX11
HISTORY
DATASET-OWNER-----(NULL) CREATION--------2000.108
RELEASE----------------2 EXPIRATION------0000.000

SMSDATA
STORAGECLASS -----STRIPE MANAGEMENTCLASS---MCDB22
DATACLASS ------KEYEDEXG LBACKUP ---0000.000.0000
BWO STATUS------00000000 BWO TIMESTAMP---00000 00:00:00.0
BWO---------------(NULL)

RLSDATA
LOG ----------------(NULL) RECOVERY REQUIRED --(NO)
VSAM QUIESCED -------(NO) RLS IN USE ---------(NO)

0 LOGSTREAMID-----------------------------(NULL)
RECOVERY TIMESTAMP LOCAL-----X'0000000000000000'
RECOVERY TIMESTAMP GMT-------X'0000000000000000'

PROTECTION-PSWD-----(NULL) RACF----------------(NO)
ASSOCIATIONS
DATA-----DAWN.KSDSEXG.DATA
INDEX----DAWN.KSDSEXG.INDEX

0 DATA ------- DAWN.KSDSEXG.DATA
IN-CAT --- MCAT.SANDBOX.R9.VSBOX11
HISTORY
DATASET-OWNER-----(NULL) CREATION--------2000.108
RELEASE----------------2 EXPIRATION------0000.000
ACCOUNT-INFO-----------------------------------(NULL)

PROTECTION-PSWD-----(NULL) RACF----------------(NO)
ASSOCIATIONS
CLUSTER--DAWN.KSDSEXG

//LISTCAT JOB 'LISTCCAT EXAMPLE',NOTIFY=&SYSUID
//*---
//EXAMPLE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

LISTC ENTRY(DAWN.KSDSEXG) ALL
/*
Chapter 3. Recovery of VSAM data sets 167

ATTRIBUTES
KEYLEN-----------------8 AVGLRECL-------------300

BUFSPACE-----------10240 CISIZE--------------4096
RKP--------------------0 MAXLRECL-------------300

EXCPEXIT----------(NULL) CI/CA----------------192
STRIPE-COUNT-----------4
SHROPTNS(1,3) RECOVERY UNIQUE NOERASE INDEXED

NOWRITECHK NOIMBED NOREPLICAT
UNORDERED NOREUSE NONSPANNED EXTENDED

STATISTICS
REC-TOTAL---------321595 SPLITS-CI-----------6466

EXCPS--------------82682
REC-DELETED-------173530 SPLITS-CA-------------42

EXTENTS----------------4
REC-INSERTED-------45123 FREESPACE-%CI---------10

SYSTEM-TIMESTAMP:
REC-UPDATED--------56016 FREESPACE-%CA---------10

X'B3ECB2FDD72E7785'
REC-RETRIEVED----3186326 FREESPC--------610766848

ALLOCATION
SPACE-TYPE---------TRACK HI-A-RBA-------736100352
SPACE-PRI-----------3744 HI-U-RBA-------203685888
SPACE-SEC------------624

VOLUME
1IDCAMS SYSTEM SERVICES TIME:
21:15:46 04/20/00 PAGE 2
0 VOLSER------------SBOX31 PHYREC-SIZE---------4096
HI-A-RBA-------736100352 EXTENT-NUMBER----------1

DEVTYPE------X'3010200F' PHYRECS/TRK-----------12
HI-U-RBA-------203685888 EXTENT-TYPE--------X'00'

VOLFLAG------------PRIME TRACKS/CA--------------4
STRIPE-NUMBER----------1
EXTENTS:
LOW-CCHH-----X'000A000A' LOW-RBA----------------0

TRACKS--------------3744
HIGH-CCHH----X'01040003' HIGH-RBA-------736100351

VOLUME
VOLSER------------SBOX30 PHYREC-SIZE---------4096

HI-A-RBA-------736100352 EXTENT-NUMBER----------1
DEVTYPE------X'3010200F' PHYRECS/TRK-----------12

HI-U-RBA---------------0 EXTENT-TYPE--------X'40'
VOLFLAG------------PRIME TRACKS/CA--------------4
STRIPE-NUMBER----------2
EXTENTS:
LOW-CCHH-----X'0104000B' LOW-RBA----------------0

TRACKS--------------3744
HIGH-CCHH----X'01FE0004' HIGH-RBA-------736100351
168 VSAM Demystified

VOLUME
VOLSER------------MHLV14 PHYREC-SIZE---------4096

HI-A-RBA-------736100352 EXTENT-NUMBER----------1
DEVTYPE------X'3010200F' PHYRECS/TRK-----------12

HI-U-RBA---------------0 EXTENT-TYPE--------X'40'
VOLFLAG------------PRIME TRACKS/CA--------------4
STRIPE-NUMBER----------3
EXTENTS:
LOW-CCHH-----X'0103000B' LOW-RBA----------------0

TRACKS--------------3744
HIGH-CCHH----X'01FD0004' HIGH-RBA-------736100351

VOLUME
VOLSER------------SBOX28 PHYREC-SIZE---------4096

HI-A-RBA-------736100352 EXTENT-NUMBER----------1
DEVTYPE------X'3010200F' PHYRECS/TRK-----------12

HI-U-RBA---------------0 EXTENT-TYPE--------X'40'
VOLFLAG------------PRIME TRACKS/CA--------------4
STRIPE-NUMBER----------4
EXTENTS:
LOW-CCHH-----X'0103000B' LOW-RBA----------------0

TRACKS--------------3744
HIGH-CCHH----X'01FD0004' HIGH-RBA-------736100351

0 INDEX ------ DAWN.KSDSEXG.INDEX
IN-CAT --- MCAT.SANDBOX.R9.VSBOX11
HISTORY
DATASET-OWNER-----(NULL) CREATION--------2000.108
RELEASE----------------2 EXPIRATION------0000.000

PROTECTION-PSWD-----(NULL) RACF----------------(NO)
ASSOCIATIONS
CLUSTER--DAWN.KSDSEXG

ATTRIBUTES
KEYLEN-----------------8 AVGLRECL---------------0

BUFSPACE---------------0 CISIZE--------------2048
RKP--------------------0 MAXLRECL------------2041

EXCPEXIT----------(NULL) CI/CA-----------------21
SHROPTNS(1,3) RECOVERY UNIQUE NOERASE NOWRITECHK

NOIMBED NOREPLICAT UNORDERED
NOREUSE EXTENDED

STATISTICS
REC-TOTAL------------263 SPLITS-CI-------------42

EXCPS--------------39045 INDEX:
REC-DELETED------------0 SPLITS-CA--------------1

EXTENTS----------------2 LEVELS-----------------3
REC-INSERTED-----------0 FREESPACE-%CI----------0

SYSTEM-TIMESTAMP: ENTRIES/SECT----------13
REC-UPDATED--------21884 FREESPACE-%CA----------0

X'B3ECB2FDD72E7785' SEQ-SET-RBA------------0
Chapter 3. Recovery of VSAM data sets 169

REC-RETRIEVED----------0 FREESPC------------63488
HI-LEVEL-RBA------436224
1IDCAMS SYSTEM SERVICES TIME:
21:15:46 04/20/00 PAGE 3
0 ALLOCATION

SPACE-TYPE---------TRACK HI-A-RBA----------602112
SPACE-PRI-------------12 HI-U-RBA----------538624
SPACE-SEC--------------2

VOLUME
VOLSER------------SBOX31 PHYREC-SIZE---------2048

HI-A-RBA----------602112 EXTENT-NUMBER----------2
DEVTYPE------X'3010200F' PHYRECS/TRK-----------21

HI-U-RBA----------538624 EXTENT-TYPE--------X'00'
VOLFLAG------------PRIME TRACKS/CA--------------1
EXTENTS:
LOW-CCHH-----X'00000002' LOW-RBA----------------0

TRACKS----------------12
HIGH-CCHH----X'0000000D' HIGH-RBA----------516095
LOW-CCHH-----X'01040004' LOW-RBA-----------516096

TRACKS-----------------2
HIGH-CCHH----X'01040005' HIGH-RBA----------602111

VOLUME
VOLSER------------SBOX30 PHYREC-SIZE---------2048

HI-A-RBA---------1032192 EXTENT-NUMBER----------1
DEVTYPE------X'3010200F' PHYRECS/TRK-----------21

HI-U-RBA---------------0 EXTENT-TYPE--------X'40'
VOLFLAG-------CAND-SPACE TRACKS/CA--------------1
EXTENTS:
LOW-CCHH-----X'01FE0005' LOW-RBA-----------516096

TRACKS----------------12
HIGH-CCHH----X'01FF0001' HIGH-RBA---------1032191

VOLUME
VOLSER------------MHLV14 PHYREC-SIZE---------2048

HI-A-RBA---------1548288 EXTENT-NUMBER----------1
DEVTYPE------X'3010200F' PHYRECS/TRK-----------21

HI-U-RBA---------------0 EXTENT-TYPE--------X'40'
VOLFLAG-------CAND-SPACE TRACKS/CA--------------1
EXTENTS:
LOW-CCHH-----X'01FD0005' LOW-RBA----------1032192

TRACKS----------------12
HIGH-CCHH----X'01FE0001' HIGH-RBA---------1548287

VOLUME
VOLSER------------SBOX28 PHYREC-SIZE---------2048

HI-A-RBA---------2064384 EXTENT-NUMBER----------1
DEVTYPE------X'3010200F' PHYRECS/TRK-----------21

HI-U-RBA---------------0 EXTENT-TYPE--------X'40'
VOLFLAG-------CAND-SPACE TRACKS/CA--------------1
170 VSAM Demystified

EXTENTS:
LOW-CCHH-----X'01FD0005' LOW-RBA----------1548288

TRACKS----------------12
HIGH-CCHH----X'01FE0001' HIGH-RBA---------2064383

1IDCAMS SYSTEM SERVICES TIME:
21:15:46 04/20/00 PAGE 4
0 THE NUMBER OF ENTRIES PROCESSED WAS:

AIX -------------------0
ALIAS -----------------0
CLUSTER ---------------1
DATA ------------------1
GDG -------------------0
INDEX -----------------1
NONVSAM ---------------0
PAGESPACE -------------0
PATH ------------------0
SPACE -----------------0
USERCATALOG -----------0
TAPELIBRARY -----------0
TAPEVOLUME ------------0
TOTAL -----------------3

0 THE NUMBER OF PROTECTED ENTRIES SUPPRESSED WAS 0
0IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0
0
0IDC0002I IDCAMS PROCESSING COMPLETE. MAXIMUM CONDITION CODE WAS 0

Use the output from the LISTCAT command listed above to follow the
explanations about the most key catalog fields shown by LISTCAT.

3.9.1 High used RBA value (HURBA) for KSDS
There are two HURBAs per KSDS cluster: the data HURBA, and the index
HURBA:

• Data HURBA

This is the RBA of the physically highest record in data CI (it does not
imply the highest key, because the existence of splits). In other words, it
points to the end of the last CA which ever, at any time, contained data. It
is incremented by one CA, if a CA split or add-to-the-end in a new CA
occurs. It is always on a CA boundary.

If all logical records are deleted the HURBA does not turn to zero — only
via create or re-setting. Also, if the data set was defined with the Reuse
option, in this case at Open time, HURBA is re-set to zero.
Chapter 3. Recovery of VSAM data sets 171

When share option cross-system 4 is set to the data set, this value cannot
be modified.

If a data set has HURBA=0, it cannot be opened for input.

• Index HURBA

This points to the end of the last index CI written. It is incremented by one
CI if a new record is added to the index. Separate HURBA values are
maintained for the imbedded sequence set, and the high level index if
IMBED is used. Index HURBA is always on a CI boundary.

There are also two types of data components: ESDS and RRDS:

• ESDS data component

The HURBA points to the end of the last CI which contains data. It is
incremented by one CI, if a new CI is entered via add-to-end processing.

It is always on a CI boundary.

• RRDS data component

The HURBA points to the end of the last CA which ever contained data. It
is incremented by add-to-end processing which enters a new CA, or by
direct insert of a record whose slot number resolves to a new CA.

It is always on a CA boundary.

The name, HURBA, does not mean that every byte up to the HURBA is used.
There may be imbedded free space due to distributed space, record deletion,
slots which have never been used (RRDS) as well as unused space at the
end of the CI or CA. The HARBA is an RBA pointer to the end of the last
current extent of that cluster component. Until the HURBA equals the HARBA
for that component, another extent will not be taken.

3.9.2 High allocated RBA value (HARBA)
This is the highest RBA available within allocated space to store the data
component, its key range, the index component, or the sequence set records
of a key range. KSDS has two HARBAs: one for the index; another for data.

The difference (HARBA - HURBA) is the amount of space ready to be freed
by the free space release option after close. It includes all the CAs in the
physical end of the data sets with only free CIs.
172 VSAM Demystified

3.9.3 FREESPC
This is the actual number of bytes of free space in the total amount of space
allocated to the data or index component. Free space in partially used control
intervals is not included in this statistic.

3.9.4 High key RBA/CI
It is the RBA of the logically highest data CI (the one with the record with the
highest key). When the cross-system SHAREOPTION 4 is set to the data set,
this value cannot be modified.

3.9.5 High-level index RBA value
Any time the data set is accessed directly through a key, VSAM uses this
value to find the highest level index record to start the search through lower
levels.

If the high-level index RBA is corrupted, the user will not be able to perform
direct requests against the data set.

3.9.6 Sequence set first RBA value
If the data set is being read sequentially, from start to finish (for example,
REPRO), VSAM uses this value to go directly to the first sequence set record.
If Sequence Set RBA is corrupted sequential access will not be possible.

3.9.7 Number of index levels
The number of levels of index records in the index. for an KSDS/VRRDS
cluster. If this number is greater than four (meaning a very big data set,
maybe it is an indication for reorganization increasing the size of the CI index.

3.9.8 Time stamps
At close time, if the cluster is open for output, the KSDS time stamps are
updated with the current system time (same value for both data and index).
However, each component′s individual time stamp is updated only if it is less
than the current system time stamp. Prior to updating time stamps, Close
writes SMF record type 64. The timestamp ordering the SMF record should
slightly precede that in the catalog.

At Open time, if the timestamp of the index component is less than that of the
data component, the data component is updated separately and after the
index component, or vice-versa.
Chapter 3. Recovery of VSAM data sets 173

3.10 DFSMSdss PRINT command

With the PRINT command, you can print:

• A single-volume non-VSAM data set, as specified by a fully qualified
name. You must specify the volume where the data set resides, but you do
not need to specify the range of tracks it occupies.

• A single-volume VSAM data set component (not cluster). The component
name specified must be the name in the VTOC, not the name in the
catalog.

• Ranges of tracks.

• All or part of the VTOC. The VTOC location need not be known.

3.11 SMF record types related to VSAM data sets

Following are the SMF records related to VSAM recovery and VSAM
performance.

3.11.1 SMF record type 60
Record type 60 is written when a record is inserted, updated, or deleted from
a VSAM Volume Data Set (VVDS). For example, when a VSAM cluster is
defined, closed, or deleted.

VVDS is a part of ICF catalog structure (the other is BCS), located in the
volume which contains the described data sets. It contains dynamic
information, as statistics, about these data sets. VSAM data sets and SMS
data sets must be cataloged in an ICF catalog. The record related to a VSAM
data set is a VSAM Volume Record (VVR), while the record related to
non-VSAM data sets is a Non-VSAM Volume Record (NVR).

One type 60 record is written for each VVR or NVR written or deleted. This
record:

• Identifies the VVDS in which the VVR or NVR is written or deleted

• Gives the new, updated, or deleted VVR or NVR.

• Identifies the job by job log and user identifiers.
174 VSAM Demystified

3.11.2 SMF record type 61
One type 61 record is written for each record inserted or updated in a catalog.
This record:

• Identifies the entry being defined and the catalog in which the catalog
record is written

• Gives the new or updated catalog record.

• Identifies the job by job log and user identifiers.

3.11.3 SMF record type 62
Record type 62 is written at the successful or unsuccessful opening of a
VSAM component or cluster. The record:

• Identifies the VSAM component or cluster.

• Indicates whether it was successfully opened.

• Names the VSAM catalog in which the object is defined and the volumes
on which the catalog and object are stored.

• It identifies the job that issued the OPEN macro by job log identification
and user identification.

This record is not generated when a system task issues the OPEN macro.

3.11.4 SMF record type 63
Record type 63 is written when a VSAM catalog entry (a component, cluster,
catalog, alternate index, path, or non-VSAM data set) is defined by the
DEFINE Access Method Services command and when that definition is
altered. For example, when a VSAM catalog entry is altered with new space
allocation information (that is, when the VSAM End-Of-Volume (EOV) routine
extends the entries object) or, if the entry is changed by the Alter Access
Method Services command. One record type 63 is written for each newly
created or altered entry. This record is not written when a VSAM catalog is
renamed. In that case record type 68 is written. This record:

• Identifies the catalog in which the object is defined.

• Gives the catalog record for the newly defined object, and, for an
alteration, gives the parts of the old catalog record before they were
altered.

• Identifies the job and the user that caused the record to be written. If it
was caused by a system task, the job-name and the user-identification
fields contain blanks and the time and date fields contain zeros.
Chapter 3. Recovery of VSAM data sets 175

3.11.5 SMF record type 64
Record type 64 is written when:

1. A VSAM component or cluster is closed.

2. VSAM must switch to another volume to continue to read or write.

3. There is no more space available for VSAM to continue processing.

When a cluster is closed, one record is written for each component in the
SMF record type 64. The reason why the record was created is indicated in
the record.

3.11.5.1 SMF record type 64 description
The record describes the device and volume(s) on which the object is stored,
and gives the extents of the object on the volume(s). It gives statistics about
various processing events that have occurred since the object was defined,
such as the number of records in the data component, the number of records
that were inserted, and the number of control intervals that were split.

The record written when the VSAM component or cluster is closed contains
changes in statistics from OPEN to time of EOV and CLOSE.

3.11.5.2 SMF64 sample program
The IDCAMS LISTCAT command shows the cumulative number of EXCPs,
since the initial load. Sometimes is more important to know the number of
EXCPs executed between OPEN and CLOSE, mainly when you are doing
tuning in buffering. Section A.3, “Sample program to extract information from
SMF record type 64” on page 214, contains sample source assembler code. It
can be used for showing more information about your VSAM data sets. By
using JCL parameters, you can determine an EXCPs threshold. Then, the
program only shows data covering the data sets with equal or more EXCPS
than the threshold that occurred between open and close. The report
generated is based on the SMF 64 record, generated each time a VSAM data
set is closed. It can help you to determine the characteristics of the data sets
with high I/O activity. To reduce the I/O activity:

• You can use SMB if the data sets are already in extended format.

• You can convert data sets to extended format and then use SMB.

• In the case of LSR buffering and direct access, you can find out if the data
sets are using defer write, and if not, whether they could be.

• You can determine whether the VSAM buffers are below 16 MB, and
whether to move them above 16 MB.
176 VSAM Demystified

• For KSDS and VRRDS data sets, when the total number of free control
intervals is much higher than free space defined to the data set consider
reorganization. Do not reorganize data sets if it is not necessary.

• When doing changes in buffering, you can use the report to see how the
numbers of EXCPs decreased.

For a description of SMF type 64 fields, refer to OS/390 MVS System
Management Facilities (SMF), GC28-1783.

3.11.5.3 SMF record type 65
Record type 65 is written during any processing that results in a DELETE
request to Catalog management services, such as:

• IDCAMS DELETE

• IEHPROGM UNCATLG

One type 65 record is written for each record updated or deleted from a
catalog. The record:

• Identifies the entry being deleted

• Identifies the catalog in which the catalog record is updated or deleted.

• Gives the updated or deleted catalog record.

• Indicates whether a VSAM cluster or non-VSAM data set was scratched,
or whether only catalog information was deleted.

• Identifies the job and the user. If a system task caused the record to be
written, the job name and user identification fields contain blanks, and the
time and date fields contain zeros.

3.11.5.4 SMF record type 66
Record type 66 is written during any processing that results in an ALTER
request to Catalog Management Services, such as IDCAMS ALTER.

One type 66 record is written for each record written or deleted from a
catalog. The record:

• Identifies the entry being altered.

• Identifies the catalog in which the catalog record is written or deleted.

• Gives the new, updated, or deleted catalog record.

• Indicates if the entry was renamed and, if so, gives the old and new names
of the entry.
Chapter 3. Recovery of VSAM data sets 177

• Identifies the job and the user. If a system task caused the record to be
written, the job name and user identification fields contain blanks and the
time and date fields contain zeros.

3.11.5.5 SMF record type 67
Record type 67 is written when a VSAM catalog entry (a component, cluster,
catalog, alternate index, path, or non-VSAM data set) is deleted. A record is
written for each entry affected by the DELETE Access Method Services
command. For example, three records are written for an indexed cluster; one
for the relationship between the components of the cluster, one for the data
component, and one for the index component. The record:

• Identifies the deleted entry.

• Identifies the VSAM catalog in which the entry was defined.

• Gives the total logical VSAM catalog record.

• Identifies the job and user that caused the record to be written. If it was
caused by a system task the job-name and the user-identification fields
contain blanks and the time and date fields contain zeroes.

3.11.5.6 SMF record type 68
Record type 68 is written when a VSAM catalog entry (a component, cluster,
catalog, alternate index, path, or non-VSAM data set) is renamed using the
ALTER Access Method Services command. This record:

• Identifies the VSAM catalog in which the object is defined.

• Gives the old and new names for the object.

• Identifies the job and user that renamed the data set. If a system task
caused the record to be written, the job-name and user-identification fields
contain blanks and the time and date fields contain zeros.

3.11.5.7 SMF record type 69
Record type 69 is written when a VSAM data space is defined, extended, or
deleted using the DEFINE or DELETE Access Method Services commands.
Record type 69 is not written when a catalog or a unique data set is defined
or deleted. This record:

• Identifies the catalog in which the data space is defined.

• Identifies the volume on which it is (or was) allocated.

• Gives the number of free data space extents and the amount of
unallocated space on the affected volume after the definition, extension,
or deletion.
178 VSAM Demystified

• Identifies the job and the user that caused the record to be written. If it is
caused by a system task, the job-name and user-identification fields
contain blanks and the time and date fields.

3.11.5.8 SMF record type 42
This record provides VSAM record level sharing (RLS) statistics.

3.12 Resource Recovery Management Services (RRMS) and VSAM

S/390 provides Resource Recovery Management Services (RRMSs),
comprising:

• Resource Recovery Services (RRS), which provide sync-point services.

• Registration Services, which allow a resource manager to define itself to
the operating system.

• Context services, which allow a resource manager to indicate interest in a
work context. A context represents the resources for a work request; a
context consists of the application program requesting the work and the
protected resources involved in the work. A context represents a business
unit of work: one or more units of recovery with the associated application
programs, resource managers, and protected resources.

RRS is an OS/390 component capable to coordinate Resource Recovery in
MVS.

Resource recovery includes a set of APIs and protocols allowing a
transaction executing an application program to modify consistently multiple
protected resources. The most common is 2-phase commit protocol.

Among these resources, we may have databases, VSAM data sets, and any
product specific resource, managed by distinct resource managers. These
resource managers maybe located in different systems.

Resource recovery scenarios has three agents:

• Application Program (AP): Requests the changes.

• Resource Manager (RM): Controls the access to the resource, for
example, Data Manager (DB2, DL/I, VSAM) and Work Manager (CICS,
IMS/DC),

• Synchpoint Manager (SM) guarantees resource recovery by the
implementation of 2-phase commit. RRS is an example of an SM.
Chapter 3. Recovery of VSAM data sets 179

When an AP is running the same unit of work (transaction) under CICS and
IMS/DC, it is able to update multiple data located in DB2, DL/I, VSAM files. In
this case, there is not a need for RRS, because the SM role is executed by
CICS or IMS/DC through the Commit and Rollback functions.

RRS allows Resource Recovery (2-phase commit) when an unit of work
crosses multiple subsystems (MQSeries, CICS, IMS) and multiple OS/390
images.

Unit of recovery (UR) is a set of changes that all must be done or no one is
done. It guarantees the integrity of the updates.

2-Phase Commit Protocol aims the execution of an UR, that is, all or nothing.
Has two phases

• Phase 1:

- AP informs the changes to RMs.

- RMs log the old (UNDO) and the new (REDO) data.

- AP asks a commit to Synchpoint Manager.

- Synchpoint Manager asks RMs if they can commit (prepare commit). If
all say “yes”, then Synchpoint Manager hardens the commit in its
journal. If not all say “yes”, the commit is not hardened, and the
backout is commanded at once to the RMs (erase the log) at phase-2.

• Phase 2:

- Synchpoint Manager orders the commit (if hardened) or the backout
(if not hardened) of the changes represented by the UR.

- If all RMs return OK, Synchpoint Manager returns a return code
committed to the AP. If not, then application changes will be made
during restart.

Then, along a 2-phase commit, we may have two functions: commit or
backout.

In a pure VSAM application guaranteeing the APIs for a 2-phase commit
when you want to implement a unit of recovery, due to updates in multiple
VSAM data sets, you will find the RRs to be very helpful.

For more information, refer to OS/390 V2R8.0 MVS Programming: Resource
Recovery, GC28-1739.
180 VSAM Demystified

Chapter 4. Managing your VSAM data sets

In this chapter we provide practical tips for the daily care and feeding of your
VSAM data sets. We have included a description of the OS/390 exploiters of
VSAM functions.

4.1 Reorganization considerations

The new DASD storage technology is characterized by:

• Numerous high-capacity, small-size FBA, SCSI/SSA disks

• Redundancy in different types of RAID

• Generous amounts of cache, mainly to avoid the write penalty caused by
RAID

• Plenty of microcode in order to support RAID, cache algorithms, the
mapping between the disks and the logical 3390/3380 volumes (as seen
by OS/390), and in the RVA case, the virtualization of the 3390/3380

Because of that, all the old considerations in order to avoid long seeks and
RPS misses in a 3390/3380 logical volume are out-of-date. Does this apply to
VSAM KSDS need of reorganization? Let us look at all the performance
reasons (old and new) justifying the VSAM reorganization.

4.1.1 CI/CA splits
Consider CI/CA splits, causing long seeks in the data set — this reason does
not hold true in the new disk controller scenario. Do not reorganize your
KSDS or VRRDS data set to avoid long seeks.

4.1.2 The loss of useful space in data CA
The reasons causing this type of waste are as follows:

• There is no CA reclamation in VSAM KSDS/VRRDS. Then, if at load time
a specific data CA was loaded with records belonging to an specific key
range and later on the majority of them are deleted (and not re-utilized, as
a timestamp key), the CA is underpopulated, and this free space is not
reclaimed.

How do we measure that? To answer this question, refer to 3.9, “IDCAMS
LISTCAT output fields” on page 166, and the diagram shown in Figure 22,
as you follow along with our explanation.
© Copyright IBM Corp. 2001 181

Figure 22. HARBA, HURBA, and free space

From this diagram showing HARBA, HURBA, and free space, you can see:

The subtraction: HARBA - HURBA = X gives the amount of free bytes in
the free CIs allocated in the CAs beyond HURBA.

If you subtract FREESPC - X = Y it gives the amount of free bytes in free
CIs embedded in CAs included in HURBA.

Y includes the CA Freespace%, 25% for example.

If (Y / HURBA) * 100 is consistently greater than CA Freespace% (25%),
and the number of deleted records (in catalog) is a large figure, it means
that it is time to reorganize due to non-reclaimed CAs.

Following is a numeric example:

HI-A-RBA-------184320000 (HARBA)
HI-U-RBA-------176209920 (HURBA)

CI size = 4k
HARBA = 16 x 4k = 64k
HURBA = 12 x 4k= 48k
HARBA - HURBA = 16k
FREESPACE = 11 x 4k = 44k
44k - 16k = 28k (7 CIs)

28/48 x 100 > > 25%

58% > > 25% THEN, REORG

HURBA

WHEN TO REORGANIZE

HARBA

Typetext

TypetextFREE

FREE

TypetextFREE

TypetextFREE

TypetextFREE

TypetextFREE

TypetextFREE

TypetextFREE

Typetext

Typetext

TypetextFREE

TypetextFREE

Typetext

Typetext

Typetext

TypetextFREE
182 VSAM Demystified

FREESPACE-%CA---------10
FREESPC---------89616384

In view of these figures — Is it time for a reorganization?

• A strong argument to reorganize is the knowledge that those deleted keys
are not going to be inserted again.

• Another reason to reorganize, is when at load time the sequence set Index
CI is not big enough to contain information about all the data CIs in the
data CA. In this case the CA is truncated and the rest is unused.

How do we measure that? The only way to distinguish between wasted CAs
due to smaller index CIs or due to deletions is the previous knowledge of the
deletions. Then:

• If (Y / HURBA) * 100 is consistently greater than CA Freespace% and the
number of deleted records in the catalog is a small figure, it is time to
reorganize, due to the small size of the index CIs. The index CI size must
be re-specified as a larger value.

• DFSMShsm issues message ARC0909E advising that is time to
reorganize the VSAM data set, due to a free space threshold being
reached.

4.1.3 CI/CA splits causing free space increase
After CI/CA splits the free space per CI (excluding the totally freed) tends
to increase. In sequential read processing there is some impact on
performance because more free bytes are moved to storage. Refer to
2.7.6, “I/O service time (connect) for VSAM files” on page 117.

How do we measure that? By the number of CI and CA splits in the
catalog, together with the free space information.

A general comment about CI/CA splits, is that their number usually grows
steady, after reorganization, till they reach a plateau. If this plateau is
acceptable, do not try another reorganization.

4.2 Sharing VSAM data sets

There are three important mechanisms in order to implement VSAM data set
integrity, when they are shared among users:

• VSAM SHARE options, playing an important role in VSAM integrity within
one OS/390 image. They specify whether and to what extent data is to be
shared among tasks in one or multiple OS/390 address spaces. Some
Chapter 4. Managing your VSAM data sets 183

function is also provided for sharing among tasks in multiple OS/390
images.

• ENQ/Reserve serialization functions, mandatory for multiple OS/390
images environment. If is the case of using ENQ, you should specify
EXCLUSIVE for writes and updates and specify SHARE for reads

• JCL Disposition (Old or Shr), which issues an ENQ implicitly

• Record Level Sharing (RLS) locking mechanism, a very sophisticated
mechanism using the coupling facility. Share options do not apply to
VSAM data sets in RLS mode. RLS is not covered in this book.

When you define VSAM data sets, you can specify how the data is to be
shared within a single system or among multiple systems that have access to
your data and share the same DASD. Before you define the level of sharing
for a VSAM data set, you must evaluate the consequences of reading
incorrect data (a loss of read integrity) and writing incorrect data (a loss of
write integrity). These are situations that can result when one or more of the
data set's users do not adhere to guidelines recommended for accessing
shared data sets. On the other hand, it is important to avoid the unnecessary
use of certain serialization functions which may cause a performance
degradation.

4.2.1 Write and read integrity
When you share a VSAM data set among tasks (from the same or different
OS/390 images) there is a need for write and read integrity.

4.2.1.1 Write integrity
Write I/O operation should guarantee integrity for non-atomic writes (the
writes executed in multiple I/O operations), for example:

• Logical record update in-place, where a record is read, updated in memory
and written back

• CI index updates due to CI data insertions and deletions (KSDS/VRRDS)

• CI and CA splits, which involves several write I/O operations

• Data set and catalog (usually VVDS) synchronous updates

To have write integrity, when several tasks are accessing the same data set,
VSAM (and you) must guarantee that all the non-atomic writes are executed
without be pre-empted. This means that no other related intervening write I/O
operation should be executed.
184 VSAM Demystified

4.2.1.2 Read integrity
Read integrity guarantees that the record you read is the most current copy
available, it implies:

• Within atomic writes, the related read I/O operation is suspended.

• The read I/O operation is able to find the most current copy of the logical
record, meaning:

- If the data is in the buffer pool, VSAM must guarantee the most current
copy to satisfy the read (also called buffer pool coherency). In a shared
environment with different OS/390 images accessing the data set,
there are two ways of doing this: through Parallel Sysplex RLS cross
invalidation (not covered in this book) or by VSAM refreshing the buffer
at every read request (specified with SHAREOPTION 4 which we
discuss later).

- The write operation must send the current copy to where the next read
can access it, even in a multiple OS/390 image system (to shared
DASD or with Parallel Sysplex RLS, to the coupling facility).

4.2.2 Who is sharing the data set?
You can share VSAM data sets between:

• Different step tasks (different ACBs) in a single operating system

• Multiple ACBs in a task or different subtasks

• One ACB shared in a task or different subtasks

• Different tasks in different OS/390 images. To share between different
OS/390 images safely, you need Global Resource Serialization (GRS) or
an equivalent product. Failure to use GRS or an equivalent can result in
both data set, catalog and VTOC corruption.

For the sake of simplicity, we divide this topic into three types of VSAM data
set sharing: intra-address space (tasks and subtasks in the same address
space), cross-region (tasks within an OS/390 image in different address
spaces) and cross-system (tasks in different OS/390 images).

4.2.3 Intra-address space sharing
Before talking about intra-address space sharing, let us introduce the concept
of a Resource Pool and the role it plays in the VSAM serialization.
Chapter 4. Managing your VSAM data sets 185

Each VSAM cluster has a Resource Pool (RP) —- shared or not with other
clusters. A RP is formed by a buffer pool (BP) and a set of control blocks.
When your program issues a GET request, VSAM reads an entire control
interval into a buffer in the BP (or obtains a copy of the data from a control
interval already in the BP). If your program modifies the control interval's
data, VSAM ensures within a single control block structure (from RP) that you
have exclusive use (locking) of the information in the control interval until it is
written back to the data set, or moved back to the BP.

However, if the data set is accessed by more than one task at a time, through
another RP, VSAM cannot ensure that your program has exclusive use of the
data because the control block structure is not the same. In this case, you
must obtain exclusive control, using facilities such as VSAM share options,
ENQ/RESERVE, and JCL disposition.

Sometimes this locking in a CI basis done by VSAM may cause contention
and even deadlocks. There are no dead lock detection and prevention
algorithms implemented in VSAM. If you are facing these drawbacks a
recommendation is to have less logical records in a data control interval, or in
other words to have better lock granularity.

When in LSR mode you may choose between VSAM deferring (placing the
requiring task in wait) the request until the resource becomes available (LEW,
default) or VSAM returning the exclusive control return code X’14’ to the
application program (NLW). The application program is then able to
determine the next action. These options are in the MACRF parameter in
ACB.

Intra-address space sharing, also called subtask sharing is the ability to
perform multiple OPENs to the same data set within a task or from different
subtasks in a single address space and still share a single RP control block
structure. Subtask sharing allows many logical views of the data set while
maintaining a single RP control block structure. With a single control block
structure, you can ensure that you have exclusive control of the buffer when
updating a CI. All subtasks accessing the data set through this single RP
control block structure, do not depend on VSAM Share Options, JCL DISP or
GRS specifications to guarantee integrity.

The three methods of achieving a single RP control block structure for a
VSAM data set while processing multiple concurrent requests are:

• A single access method control block (ACB) and a STRNO>1. Refer to
DFSMS/MVS Using Data Sets, SC26-4922 to get more information about
STRNO.
186 VSAM Demystified

• DDname sharing, with multiple ACBs (all from the same data set, and
located in the same address space) pointing to a single DD statement.
Example:

//DD1 DD DSN=ABC
OPEN ACBl,DDN=DD1
OPEN ACB2,DDN=DD1

• Data set name sharing, with multiple ACBs pointing to multiple DD
statements with different DDnames, but with the same DSname. The data
set names are related with an ACB open specification (MACRF=DSN).
This MACRF option means that subtask shared control block connection is
based on common data set names. Example:

//DD1 DD DSN=ABC
//DD2 DD DSN=ABC

OPEN ACBl,DDN=DDl,MACRF=DSN
OPEN ACB2,DDN=DD2,MACRF=DSN

When implementing intra-address space sharing, it is necessary that when
attaching new subtasks, the subpool zero must be shared by mother and
daughter tasks in order to shared the RP control blocks (SZERO=YES in the
ATTACH macro).

When a control interval is not available for the type of task processing
requested (shared or exclusive), VSAM record management acts differently
depending on the selected buffer options (NSR, LSR, or GSR), refer to 2.6.9,
“Buffering options” on page 58, to have more informations on buffer options:

• NSR. The requester task gets a second copy from the buffer, with the
exception of the case where the owner task and the requester asked for
exclusive control, that is both are writing (updating or deleting). In this
case the requester gets back a logical error in the RPL feedback code.

• LSR/GSR. The requester task:

- Shares the same buffer (CI) with the owner task, if both are asking for
shared control (read).

- Gets a logical error in the RPL feedback code, if owner task has
exclusive control (write, update or delete).

- Gets a logical error in RPL feedback code, or is queued (placed in wait
state) by VSAM until the buffer is released by the owner task which is
in shared control (and the requester ask for exclusive). The NLW
parameter in ACB forces the logical error, instead of the queueing.
Chapter 4. Managing your VSAM data sets 187

As you can see, depending on the selected buffer option, NSR or LSR/GSR
resources, GET requests to the same CI as that being updated may or may
not be allowed.

When a logical error in RPL is presented, the application must decide
whether to retry later or to free the resource causing the conflict.

A subtask has an opened ACB which shares a control block structure that can
have been previously used. If this subtask now issues the POINT macro to
obtain the position for the data set, it should not be assumed that positioning
is at the beginning of the data set, as in a more normal situation.

4.2.4 Cross-region options
The extent of VSAM data set sharing among tasks in distinct address spaces
within OS/390 images depends on these considerations:

• The requester, through JCL data set disposition (DISP) and eventually
local ENQs.

• The data set's cross-region share option, specified when you define (or
allocate) the data set — these options are recorded in the catalog.

Cross-region options apply when we have multiple job steps with DISP=SHR
in DD card pointing to the same VSAM data set. If you have DISP=OLD, the
serialization is done at initiator level and share options are not needed.
Following are the cross-region options:

• (1)

VSAM ensures that only one task has the data set open for output or
multiple tasks have the data set open for input only (all tasks in the same
OS/390 image). Any other OPEN fails with a return code in ACB. In other
words, VSAM is insuring total read and write integrity. The intention of
input or output is declared in the ACB MACRF parameter, not the Open
input or output options.

• (2)

VSAM ensures that only one task has the data set open for output while
multiple tasks have the data set open for input (all tasks in the same
OS/390 image). All other open for output fail with a return code in ACB. In
other words, VSAM is insuring write integrity. If you require read integrity
(with a better performance due to higher granularity than cross-regions
(1), it is your responsibility to use the ENQ and DEQ macros appropriately
to provide read integrity for the data the program obtains. The intention of
input or output is declared in the ACB MACRF parameter.
188 VSAM Demystified

• (3)

VSAM allows multiple tasks to open the data set for output or input. VSAM
does not reject a request due to cross-region share options. The sharing
tasks must ensure both read and write integrity through their own ENQs
(including Open and Close processing on them). VSAM does not refresh
the buffer pools for direct processing

• (4)

VSAM allows multiple tasks to open the data set for output or input. VSAM
does not reject a request due to cross-region share options. The sharing
tasks must ensure both read and write integrity through their own ENQs
(including open and close processing on them). VSAM refreshes the data
and index components buffer pools for direct processing (sequence set is
not refreshed), to guarantee the coherency of the data in the buffer pool.
Coherency in this case means that the task gets the most updated
contents of the requested record.

For share options 3 and 4, (for performance reasons) you may use ENQ
share for Reads and ENQ exclusive for Writes.This improves the
performance of reads with read integrity. If you do not issue an ENQ for
reads, you loose the read integrity.

Protecting the cluster name with DISP processing and the components by
VSAM share options is the normally accepted procedure.

4.2.5 Cross-system options
The multiple access is done through tasks of the different OS/390 images.

Job steps of two OS/390 images may can gain access to the same VSAM
data set regardless of the disposition specified in each step's DD statement
for the data set. DISP=OLD (without GRS) only serializes Jobs steps from the
same OS/390 image. However, the serialization can be implemented and the
access may be denied, if the SYSDSN ENQ name is made GRS global.

To get exclusive control of the data set's volume, a task in one system may
issue:

• RESERVE macro. However, it is recommended that the RESERVE be
converted to a GRS global ENQ instead, to improve the granularity of the
serialization (RESERVE locks the full volume)

• ENQ macro. In this case the Qname and Rname must be GRS global
Chapter 4. Managing your VSAM data sets 189

Following are the cross-system options:

• (3)

Specifies to VSAM that the data set can be fully shared. VSAM does not
rejects a request due to cross-system share options. With this option,
each task is responsible for maintaining both read and write integrity for
the data the program accesses. The RESERVE (or GRS global ENQ) and
DEQ macros are required with this option to maintain data set integrity.

For share options 3 and 4 you may use (for performance reasons) GRS
global ENQ share for Reads and GRS global ENQ exclusive for Writes.
With these options you have write integrity and read integrity.

In this Share option VSAM uses control block update facility (CBUF).
Refer to 2.3.6.5, "Control Block Update Facility (CBUF)" on page 56.
Because CBUF CA splits and addition of a new high-key data set record
are allowed.

The buffers are not refreshed with share options 3, but for tasks executing
programs using LSR/GSR, they can be invalidate through MRKBFR macro
and forced to be written through WRTBFR macro. Refer to, 2.8, “VSAM
and SmartBatch” on page 121, to understand how to improve the
performance of a (3 3) data set using SmartBatch.

• (4)

Specifies to VSAM that the data set can be fully shared. VSAM does not
reject a request due to cross-system share options. Data and sequence
sets buffers for direct processing (for reads and writes) are refreshed for
each request (index buffers are not). Output processing is limited to
update and add processing that does not change either the high-used
RBA or the RBA of the high key data control interval. Then, control area
splits and the addition of a new high-key record for a new control interval
that results from a control interval split are not allowed. VSAM returns a
logical error to the user's program if this condition should occur. If the task
running your program does not satisfy the requirements described above,
you require cross-system option 3, where due to CBUF, CA splits and
addition of a new high-key record are allowed.

With this option, each task is responsible for maintaining both read and
write integrity for the data the program accesses. The RESERVE (or GRS
global ENQ) and DEQ macros are required with this option to maintain
data set integrity.
190 VSAM Demystified

Table 16 contains a summary of the share options.

Table 16. Relationship between share options and VSAM functions

4.2.6 General share options — considerations
User tasks running user programs that ignore the write integrity guidelines in
share options 3 and 4 can cause VSAM program checks, lost or inaccessible
records, un-correctable data set failures, and other unpredictable results. This
option places responsibility on each user sharing the data set. Refer to 3.7,
“Broken data sets” on page 139.

User programs that ignore the read integrity guidelines in share options 2, 3
and 4 results in down-level data records and erroneous no-record-found
conditions.

As stated before in cross-region option 4 and cross-system option 4, buffers
for direct processing are refreshed by VSAM for each request (or in other
words, buffering is not saving I/O operations). Following are more details on
this:

• Each PUT request results in the appropriate buffer being written
immediately into the VSAM object's DASD. VSAM writes out the buffer in
the user's address space that contains the new or updated data record.
The data and sequence-set control interval buffers are marked invalid
following the I/O operation to DASD

• Each GET request results in all the user's input buffers being refreshed.
The contents of each data and index buffer used by the user's program is
retrieved from the VSAM object's direct access device.

In addition, VSAM provides assistance to the application to aid in preserving
the integrity of the data:

• When sharing data sets in a cross-regions or cross-systems environment,
you should run IDCAMS VERIFY before opening a data set. VERIFY
updates the catalog description of the data set and discards some

Share Options (DISP=SHR) VSAM Function Provided

(3 3) CBUF and no buffer refresh

(3 4) Data/Seq Set buffers invalidate. No CA
splits

(4 3) Data/Index buffers invalidate. CBUF

(4 4) Data/Seq Set/lndex buffers invalidate. No
CA splits
Chapter 4. Managing your VSAM data sets 191

erroneous information that can result from improper closing of the data
set. This erroneous information and its effects cannot be evident to all
systems sharing the data set. VERIFY eliminates the problem if it is
running as the first step of a job stream. Refer to 3.5.3, “VERIFY
command” on page 135, for more information

• GRS serialization

Open/Close/EOV routines use ENQ in SYSVSAM.dsn.catname.I|O|B, to
implement serialization when processing a VSAM data set, as well as to
ensure proper sharing based on share options. Add the SYSVSAM
Qname to the GRS RNL inclusion list to avoid integrity exposures

• Pay attention that during load mode processing, you cannot share data
sets. Share options are overridden during load mode processing to (1 3).
Refer to 2.6.7, “Initial load option” on page 54.

4.2.7 Control Block Update Facility (CBUF)
CBF is active, whenever a data set is opened with DISP=SHR, and share
options (3 3) or (4 3). In this case, VSAM record management maintains a
copy of the critical control block data in OS/390 common storage. Obviously,
this common storage is available only to address spaces within your
operating system. Passing this information to another operating system is
your responsibility. CBUF eliminates the restriction that prohibits control area
splits. However, under share options 4 these restrictions still exist.

Cross-systems sharing with CA splits can be accomplished (with integrity) by
sending the VSAM shared information (VSI) blocks to the other host at the
conclusion of each output request. Every time a data set is opened on a
system for CBUF processing, a VSI is built for the data set and added to the
VSI chain. This control block is then updated by the user to communicate
information from one address space to another. Generally, the VSIs sent to
other OS/390 images has not changed and only a check occurs. Refer to the
A.2, “Accessing the VSAM Shared Information (VSI)” on page 213, where
there is an example about how to get the VSI.

About sending the VSI to the other OS/390 image, you may choose:

• XRC APIs, as: IXCCONN, IXCMSGO, IXCMSGI

• APPC VTAM LU 6.2, as: RECEIVE_AND_WAIT and SEND_DATA

Remember that you still must continue to provide read and write integrity.
Although VSAM ensures that tasks have correct control block information if
serialization is done correctly. Also, the option 3, does not cause buffer pool
invalidation as in option 4.
192 VSAM Demystified

Because programs in many regions can share the same data set, an error
that occurs in one region can affect programs in other regions that share the
same data set. If a logical error (register 15=8) or physical error (register
15=12) is detected, any control block changes made before the error was
detected will be propagated to the shared information in common storage.

In DFSMS/MVS Using Data Sets, SC26-4922 topic Techniques of Sharing -
Examples there are examples in how to implement VSAM sharing with
integrity.

4.3 Catalog Search Interface

The Catalog Search Interface (CSI) is shipped as a component of base
DFSMS/MVS 1.5. As its use is not wide spread, we take this opportunity to
remind you of its availability and to point out its advantages over other
methods of obtaining catalog information. The following sections describe:

• CSI setup
• CSI programming considerations
• IBM supplied sample program
• Real-world example of CSI usage with sample code

4.3.1 CSI setup
The CSI is a general-use programming interface for obtaining information
from ICF catalogs. It provides great flexibility in specifying the selection
criteria for the data that is to be returned. The CSI may be invoked by
assembler programs, high-level language programs and REXX execs. See
Managing Catalogs, SC26-4914 for a complete description of the interface.

Much of the information you can obtain from the CSI you could also obtain
using an IDCAMS LISTCAT command. However, there are some advantages
that you may want to consider when accessing catalog information:

• - Using a Generic Filter Key:

When requesting information from the CSI for specific catalog entries, you
may specify a generic filter key. This key can contain the following
symbols used to filter the entry names:

- * A single asterisk represents one or more characters within a qualifier
- ** A double asterisk represents zero or more qualifiers
- % A percent sign represents one alphanumeric or national character
- %%... Up to eight characters can be specified in one qualifier
Chapter 4. Managing your VSAM data sets 193

• Using selection criteria fields

When requesting information from the CSI for specific catalog fields, you
may specify a list of field names. For example, if you were only interested
in the volume and the file sequence number for specific data sets, you
could specify the catalog field names VOLSER and FILESEQ in the field
name list when calling the CSI. Obtaining this information from IDCAMS
would require you to use the IDCAMS LISTCAT ALL command and to
scan the output to retrieve the desired information.

• Performance benefits

Using the CSI generally results in significantly better performance
compared to using IDCAMS LISTCAT, which does a catalog call for each
entry processed. The flexibility in requesting only the information that you
are interested in from the CSI results in additional performance
improvements, since you eliminate the retrieval of information that you
discard later.

• CSI programming considerations

The CSI is distributed as load module IGGCSI00 in SYS1.LINKLIB. It is
reentrant and reusable, can be invoked in 24-bit or 31-bit addressing
mode, in any PSW key, and in either problem or supervisor state.

CSI requires three parameters to process your request:

- A 4-byte reason area used to return error or status information

- A variable length selection criteria list (for input)

- Work area used to return the requested catalog data

• IBM supplied sample programs

IBM provides three sample assembler programs and one REXX exec in
SYS1.SAMPLIB. Here we provide a short summary of their functions:

• IGGCSILK produces output similar to that of an IDCAMS LISTCAT
CAT(catname) command.

• IGGCSIVG identifies unused space at the end of VSAM data sets defined
in a given catalog. This is calculated as the difference of the
high-allocated and the high-used relative byte address (HARBA-HURBA)

• IGGCSIVS produces a list of data set names defined in a given catalog
that reside on a specific volume. Such a list might be helpful in a recovery
situation affecting that volume.
194 VSAM Demystified

• IGGCSIRX is a REXX exec that produces a list of data set names
matching a generic filter key. When you call it from a TSO/E session, it will
prompt you for the filter key, and return matching data set names, their
type, and volume definition.

4.4 VSAM exploiters

Following is a list of the applications that exploit VSAM functions.

4.4.1 DB2
DB2 uses Linear (LDS) VSAM data sets for its table spaces, without
implementing Data-in-Virtual. All the control (including buffer pool) is done by
DB2. For example, DB2 implements data stripping in LDS data sets

4.4.2 Hierarchical File System (HFS)
HFS is an Unix Service data organization with no determined logical records -
it is a byte string - made of embedded directories and data. It can be
accessed by Posix code (a UNIX standard for operating system interfaces -
APIs) running under OS/390 or by OS/390 applications. In the second case
an HFS looks like a VSAM ESDS organization and is accessed in the same
way.

4.4.3 CICS
CICS uses a VSAM linear data set for logging.

CICS/RLS control data sets are VSAM linear.

4.4.4 DFSMShsm
DFSMShsm has three control data sets, respectively migration (MCDS),
backup (BCDS) and offline (OCDS). All of them are KSDS VSAM. In a multi
MVS image environment these data sets can be shared between distinct
DFSMShsm instances. This environment is called HSMplex.

4.4.4.1 Control Data Sets (CDS) Serialization
Prior to OY40882, the data sets serialization was done with hardware
reserves on the index volume. This technique left the data set exposed to
breakage, if the user did not have their index component on the same volume
as their data component.
Chapter 4. Managing your VSAM data sets 195

However, the name of the ENQ resource was not associated with the CDS
name (it was a fixed name), then in the same GRSplex with more than one
set of DFSMShsm control data sets, we have performance problems due to
false contention. In DFSMS/MVS V1.5, this problem was solved by
appending the RNAME to the BCDS name.

This support helps customer to merge disparate DFSMShsm systems into a
sysplex piece by piece by using:

• VSAM RLS for all CDSs (exception CDSQ and CDSR). So, you may
explore RLS data sharing in a parallel sysplex topology. You can specify
CDSSHR=RLS in DFSMShsm startup.

• A large CDS.

• Extended Addressing available for MCDS (greater than 16 GB) and OCDS
(greater than 4 GB)

4.4.4.2 Control data set sharing options
DFSMShsm provides an appropriate multiple OS/390 image serialization
protocol to ensure read and update integrity of the CDSs accessed by
multiple DFSMShsm instances.

In relation to the VSAM sharing aspects of DFSMShsm control data sets, it is
recommended you use SHAREOPTIONS(3 3), as already defined by the
starter set.

However, it requires an environment with GRS or equivalent function. These
options allow an easy start in a multiple OS/390 image environment. For
example, a DFSMShsm instance can be started on one OS/390 image while
a utility job is reorganizing the CDSs on another OS/390 image.

This share option is also recommended when accessing the CDSs in RLS
mode.

Nevertheless, with the preceding VSAM SHAREOPTIONS (3 3), a data
integrity exposure could still exist if DFSMShsm is not active in all connected
OS/390 images and periodic maintenance is being executed on the CDSs.
Strictly controlled procedures need to be in place. One of them can be
allocating the utility job with a disposition of OLD, which causes an exclusive
enqueue on the SYSDSN resource for the CDS cluster name. Because
DFSMShsm must have a shared enqueue on the same resource, this
approach prevents DFSMShsm from running at the same time as the utility in
a GRS environment.
196 VSAM Demystified

4.4.5 DFSMSrmm
DFSMSrmm also uses VSAM data sets for their control data sets. They are
defined with SHAREOPTIONS(3 3) and they use the VSI control block to
ensure that they have the most recent HURBA on each system.

4.4.6 OS/390 data sets
Several OS/390 data sets are VSAM:

• SMF uses ESDS.
• ASM for page data sets uses ESDS.
• ASM for STGINDEX data set uses KSDS.

4.4.7 Java/VSAM
Java started its life in 1991 as part of a Sun project called OAK, a software
environment (“virtual machine”) and programming language aimed at cable
television “set-top” boxes. To meet the objectives of this project, Java was
designed from the outset to be small, portable, fast, and safe. These
characteristics would later prove to be an essential part of Java's success, as
they made Java an ideal language for the explosion in growth of the Web and
the Internet.

4.4.7.1 Java Language and JVM
Java is a high-level language, similar to C and C++. Java is claimed to be
(relatively) simple when compared to C++, as many of the more error-prone
aspects of C++ have been eliminated. Java has no preprocessor, pointers, or
go to, only limited casting, and automatic garbage collection. So, there are
good chances that if you write it, you can read it.

Java is also an OO programming language and execution environment that
offers significant new opportunities for software development,
inter-operability, and portable execution, but without all the complications. It
has a single inheritance model, simple data types, and code that is organized
into classes.

As part of this explosive growth, Sun released a Web browser called HotJava.
To implement the browser, Sun licensed the source code for the HotJava
environment, the Java Virtual Machine (JVM). I t did not take long for
technologists to realize the potential advantages offered by the JVM and its
portable byte code.
Chapter 4. Managing your VSAM data sets 197

Today, Java can be deployed in applications, in full executable programs that
perform functions similar to applications written in traditional languages, and
in applets, which are small reusable extensions to a Web browser. A Java
program can also run in a Web server environment as a servlet thus
extending the function provided by a Web server.

IBM provides a plug-in, WebSphere Application Server, that allows Web
servers to run servlets.

As a language, Java is statically typed, and most type checking is done at
compile time. However, run-time checks such as array bounds, are still
required. A key function of Java is that numeric precision is defined with the
IEEE floating point notation, which ensures the same results everywhere for
mathematical calculations.

Figure 23 shows a simple Java class model. Java has a simple class
hierarchy, and a single inheritance model. The example shows two types of
classes: Vehicle and Building. Both classes can inherit from the class above.
Classes further down in the hierarchy can inherit from either the Vehicle or
the Building class but not both. Other object-based technologies also have
single inheritance; some complex technologies have multiple inheritance,
where a class could inherit from both the Vehicle and Building class.

Figure 23. Java class model example

Object

Vehicle Building
198 VSAM Demystified

4.4.7.2 Java Record I/O (JRIO)
JRIO is a set of APIs under OS/390 2.6 (JDK 1.1.8) level allowing the access
of Java code to I/O record oriented data organizations. It is an additional to
java.io APIs which only supports HFS type of access.

JRIO lets Java applications access traditional OS/390 file systems in addition
to the Hierarchical File System (HFS). JRIO makes it easier for Java
applications to access records within files and to access file systems through
native methods when java.io Application Programming Interfaces (APIs) do
not support those file systems.

JRIO is a class library, similar to java.io. While java.io provides byte-oriented
or field-oriented access to files, JRIO provides record-oriented access, which
is much more natural. The major differences are:

• Read/write sequential and random access for a byte string data sets is
provided by java.io.

• JRIO allows:

- Read/Write, append, update-in-place (changing length), insert, delete

- Different types of records format as: fixed, variable, spanned,
undefined

- Different types of access as: sequential, key direct, RBA direct, skip
sequential

JRIO lets record-oriented applications (supporting multiple file systems) run
using files on different file systems. It also provides a set of OS/390 native
code drivers to access:

• Virtual Sequential Access Method (VSAM) data sets (KSDS only)

• Non-VSAM record-oriented data sets (sequential or random access)

• The system catalog (listing the High Level Qualifiers (HLQ) from the
system catalog and data sets for a given HLQ)

• Partitioned data set (PDS) directory

• HFS for sequential and random I/O access to records. The HFS support
uses pure Java code to provide a set of concrete classes and directory
classes that use the underlying java.io. JRIO also provides navigational
support for HFS directories.

To run a JRIO application, Java commands implicitly set the CLASSPATH for
the JRIO classes, which reside in the same subdirectory as the Java for
OS/390 classes.
Chapter 4. Managing your VSAM data sets 199

Then, you should update your CLASSPATH to include the application classes
by using the following Shell command:

export CLASSPATH=.:/u/joe/java/myclasses:$CLASSPATH

In this example, the class loader first scans the current directory for the
application classes. If that fails, the class loader then scans the
/u/joe/java/myclasses directory.

To run the JRIO sample programs, update CLASSPATH to include the JRIO
sample classes by using the following Shell command:

export CLASSPATH=$CLASSPATH:$JAVA_HOME/recordio:

$JAVA_HOME/recsamp.jar/

JRIO and VSAM
JRIO provides indexed I/O access to records within a VSAM Key Sequenced
Data Set (KSDS). The VSAM support uses OS/390 native code to provide a
set of concrete classes that implement the KeyedAccessRecordFile class.
This lets you access records:

• In entry sequence order

• By primary unique key

• By alternate unique or non-unique key

In the A.1, “JRIO API examples” on page 209, you find a set of APIS that you
may use to access KSDS VSAM data sets

4.5 Media Manager, Open, Close, EOV in VSAM

Media Manager is the I/O driver code. It stands between the access method
and the Input Output Supervisor. VSAM has two I/O drivers depending on the
required function:

• Block Processor (SVC 121), that is old and there is a SOD for being
inactivated

• Media Manager, which is modern. There is a trend to all access methods
to use Media Manager. Between its multiple roles, Media Manager has the
I/O channel program support for implementing Extended Format.

Media Manager executes all these functions:

• Creates Channel Programs with virtual addresses (this was done before
by VSAM)
200 VSAM Demystified

• Page-Fix (or Page-Free) buffers

• Verifies that buffers are accessible in user key

• Translates virtual addresses to/from real addresses in the channel
program

• Validates that RBA is within data set

• Re-drives Channel Programs to IOS (through STARTIO macro)

• Provides for DCME statistics

• Invokes SMFIOCNT

4.5.1 OPEN macro
Before an application program can access a data set, it must first issue the
OPEN macro to open the data set for processing. The OPEN is issued
against a user Access method Control Block (ACB). Opening a data set
causes VSAM to:

• Mount the volumes where the data set resides. To get the volume
information, VSAM examines the DD statement indicated by the ACB
macro and the volume information in the catalog.

• Verify that the data set matches the description specified in the ACB or
GENCB macro. For example, MACRF=KEY implies that the data set is
KSDS.

• Construct the internal control blocks and buffer pools that VSAM needs to
process your requests for access to the data.

• Loads the access method (based in the ACB information) placing the
address in the ACB for the next GET or PUT

• Check your program security authorization (RACF)

4.5.2 CLOSE macro
The CLOSE macro disconnects your program from the data set. VSAM does
the following during CLOSE:

• Writes any unwritten data or index records whose contents have changed.

• Writes SMF records if using SMF.

• Updates the catalog entry for the data set. Updates the data set’s
high-used RBA (HURBA).

• Restores control blocks to the status they had before the data set was
opened.
Chapter 4. Managing your VSAM data sets 201

• Release virtual storage obtained during OPEN processing for additional
VSAM control blocks and VSAM routines.

• For extended format KSDS, release all space between HURBA and
HARBA if partial release was specified at OPEN.

If an abend happens during CLOSE, the HURBA which is updated during
CLOSE processing, may be incorrect. In this case, VERIFY can correct the
RBA. VERIFY determines the correct HURBA by reading the CIs.

The next VSAM OPEN performs an implicit VERIFY. If the VERIFY is not
successful, VSAM OPEN passes a return code and reason code.

You can issue a CLOSE TYPE=T or a temporary CLOSE. This causes VSAM
to complete any outstanding I/O operation, update the catalog, and write any
required SMF records. Then processing can continue without issuing an
OPEN macro.

4.5.3 End-of-Volume (EOV) macro
EOV function is invoked by VSAM Record Management, when a VSAM data
set requires additional space. The lack of this additional space is perceived
by:

• High-used RBA (HURBA) = High-allocated RBA (HARBA)

• RBA of next CI/CA greater than HARBA during create

• No extent in the current volume contains a specific searched RBA

Then, EOV acquires new extents interfacing with DADSM, updates the VSAM
control block structure for the data set with the new extent information, and
updates the critical control block data in common storage and in the catalog,
so that this new space is accessible by all regions using this VSAM data set.

4.6 Transactional VSAM

Transactional VSAM is an enhancement in the DFSMS component of OS/390
release 10.

The main objective of Transactional VSAM is to add the ability to share
VSAM data between CICS and batch for update as well as for reads. In doing
this, the integrity of the data used by CICS cannot be compromised so,
Transactional VSAM must offer the same features that CICS offers: logging
for forward and backward recovery, backout and a two-phase commit
process.
202 VSAM Demystified

Transactional VSAM builds on:

• VSAM RLS

• OS/390 system logger

• OS/390 Recoverable Resource Services (RRS). Refer to 3.12, “Resource
Recovery Management Services (RRMS) and VSAM” on page 179.

to add the ability for concurrent updates to the same VSAM data by CICS
systems and batch jobs. It also adds a repeatable read option for direct use
by VSAM to mirror the same facility provided by CICS. This means that, if a
transaction or a batch job rereads a record, it will get the same data because
any other transaction or job is locked out from updating that record.

Transactional VSAM extends RLS and uses the same locking protocols. It
also shares the same restrictions as RLS. In summary, Transactional VSAM
and RLS together add these functions to VSAM:

• Record level locking
• Commit and backout
• Undo and redo logging

Figure 24 shows the Transactional VSAM environment, following is a brief
explanation of each part.

Figure 24. Transactional VSAM environment

Batch

R
R
S

SMSVSAM

IXGLOGR

CICS

CICS/VR

Batch

R
R
S

SMSVSAM

IXGLOGR

CICS

OS/390 OS/390

Coupling Facility

SHCDS

Lock, Buffers, LOGs

Transactional VSAM environment

VSAM
Data Sets
Chapter 4. Managing your VSAM data sets 203

VSAM data sets
A VSAM data set being accessed by Transactional VSAM must be SMS
managed. The VSAM data set organizations supported are KSDSs, ESDSs,
RRDSs, and VRRDSs. You enable Transactional VSAM access to a data set
by using the IDCAMS ALTER command to mark it as recoverable or by
defining it with the LOG parameter set to UNDO or ALL. Figure 25 illustrates
this:

Figure 25. Modes of access to VSAM data sets

If UNDO is specified, then only undo logging is done for the data set; forward
recovery logging is not done. If ALL is specified, then both undo and forward
recovery logging are done and a log stream id needs to be specified. If you
need to share data sets for update between batch and CICS, they should be
defined as recoverable.

Resource Recovery Services (RRS)
RRS is part of S/390 Recoverable Resource Management Services (RRMS)
and is the most important component from a Transactional VSAM use
perspective. For more about RRMS refer to 3.12, “Resource Recovery
Management Services (RRMS) and VSAM” on page 179.

RRS is a system-wide commit coordinator and the use of RRS by other
systems such as DB2 means that a full two-phase commit can be provided
even though a program may access VSAM, DB2 and other services.

When migrating batch programs to a Transactional VSAM environment,
frequent sync points are needed to avoid holding so many locks that other
users are impacted by having to wait for the locks to be released. These sync
points are managed by RRS. RRS uses the System Logger for logging.

V S A M file s

N o n -R L S m o d e

R L S m o d e
T ra n s a c t io n a l
V S A M m o d e

N o n - re c o v e ra b le d a ta s e t

R e c o v e ra b le
d a ta s e t

B a c k w a rd re c o v e ry o n ly

B a c k w a rd re c o v e ry a n d
fo rw a rd re c o v e ry
204 VSAM Demystified

SMSVSAM address space
In a Transactional VSAM environment, SMSVSAM is responsible for:

• Providing the necessary buffering and the locking needed to provide
record level serialization.

• Providing logging or two-phase commit and backout protocols.

Providing these functions at the file system level allows batch (non-CICS)
applications to access recoverable data sets for update without first taking
access to those data sets away from CICS. This support is made possible by
support that was put into OS/390, namely the System Logger and
Recoverable Resource Management Services (RRMS).

Only one SMSVSAM address space is supported per OS/390 image. If the
SMSVSAM address space fails, it will be restarted automatically.

Coupling Facility
The Coupling Facility (CF) provides locking, caching and list services for
coupling-capable S/390 processors running OS/390. The Coupling Facility
links are used to connect Coupling Facilities to the coupling-capable
processors.

In a VSAM sharing environment, SMSVSAM uses a lock structure and
multiple cache structures to manage VSAM buffering and locking. The lock
structure and cache structures are mandatory, even if you only use
Transactional VSAM within a single OS/390 instance.

Sharing control data sets (SHCDS)
The Sharing Control Data Sets (SHCDS) are a key element in maintaining
data integrity in a shared environment. Because persistent record locks are
maintained in the Coupling Facility, several new classes of failure need to be
considered. These include a loss of connectivity to the CF, failure of an
individual OS/390 system, an SMSVSAM address space restart or a Coupling
Facility lock structure failure. The SHCDS is designed to contain the
information required for DFSMS/MVS to continue processing with a minimum
of unavailable data and no corruption of data when failures occur. The
SHCDS acts as a log for sharing support. It is a logically partitioned linear
data set that can be defined with secondary extents, although all extents for
each data set must be on the same volume.
Chapter 4. Managing your VSAM data sets 205

An SHCDS contains the following information:

• The name of the Coupling Facility lock structure in use

• The status for each system or failed system instance

• The time that the system failed

• A list of subsystems and their status

• A list of open data sets using the Coupling Facility

• A list of data sets with unbound locks

• A list of data sets in permit non-RLS state

If a permanent I/O error occurs for an active SHCDS, or if a SHCDS becomes
inaccessible from one or more systems, it is automatically replaced by one of
the spare SHCDSs. When a system is forced to run with only one SHCDS, it
issues a message requesting that you add another active SHCDS. If a system
does not have access to a SHCDS, all opens for Transactional VSAM
processing are prevented on that system until a SHCDS becomes available.
SMSVSAM will not start unless you have two active SHCDSs and at least one
spare SHCDS.

The System Logger
The System Logger provides logging functions for CICS TS, SMSVSAM and
RRS. The System Logger address space is named IXGLOGR. Each OS/390
image has one IXGLOGR address space.

The System Logger provides a single image log environment. This means
that CICS TS, SMSVSAM and RRS do not need to care where the log is,
whether in the CF or on DASD.

The log data area which subsystems use to write log entries is called a log
stream. When IXGLOGR receives the log write request from CICS,
SMSVSAM or RRS, IXGLOGR will write it to a log stream within the CF. If the
log stream buffer becomes full, IXGLOGR will allocate a data set on disk and
move the log data. This data set is called the DASD log data set. Figure 26
shows a system logger overview.
206 VSAM Demystified

Figure 26. System logger overview

Transactional VSAM uses these log streams:

1. Backout or undo log stream, one for each SMSVSAM.

2. Shunt log stream: used when back out requests fail and for long running
units of recovery. Each SMSVSAM has one.

3. User defined forward recovery log streams. When a VSAM cluster is
defined with LOG(ALL), a log stream identifier must be specified. This log
stream is used by Transactional VSAM to provide forward recovery
capability.

4. Log of logs. This is an optional log stream and contains copies of log
records that are used to automate forward recovery.

RRS uses five log streams that are shared by all the systems in the sysplex.

OS/390-1

IXGLOGR

SMSVSAM

RRSCICS

DASD Staging
Data Sets

DASD Log
Data SetsThe Coupling

Facility

Strucuture

Logstream
Log stream
Logstream

Logstream
Logstream
Log stream

Log stream
Log stream
Log stream

OS/390-2

IXGLOGR

SMSVSAM

RRS
CICS DASD Staging

Data Sets

Offload
Chapter 4. Managing your VSAM data sets 207

Batch applications
Batch applications may share recoverable VSAM data sets with CICS for
update access using the existing VSAM programming interfaces when they
access those data sets in Transactional VSAM mode. However, when they do
so, the batch applications should issue frequent sync points to ensure that
they do not tie up resources by holding locks for excessive periods of time
and that they do not cause the undo log to becomes excessively large. To
take a sync point, issue the appropriate RRS calls for a commit or a back out.

CICS
CICS does not use Transactional VSAM, so the CICS environment is not
changed when migrating batch work to a Transactional VSAM environment.
CICS continues to work not only as a user of VSAM RLS but also as the
commit coordinator for CICS transactions and as a log writer for forward
recovery and backward recovery.
208 VSAM Demystified

Appendix A. Sample code

This appendix contains useful JCL and code samples that can be modified
and used in your installation.

A.1 JRIO API examples

Here some examples of JRIO APIs for accessing VSAM data sets:

A.1.1 Locate a record by key in keyed access record file

IKeyedAccessRecordFile karf =

new KeyedAccessRecordFile("//JOE.KSDS",

; JRIO_READ_MODE);

IRecordFile index = karf.getPrimaryIndex();

karf.positionForward(index, key);

karf.read(index, buffer);

karf.close();

A.1.2 Position to a record in a random access record file

IRandomAccessRecordFile rarf =

new RandomAccessRecordFile("//JOE.KSDS",

; JRIO_READ_MODE);

rarf.read(buffer); // reads the first record (record 0)

rarf.positionLast();

rarf.positionPrev();
© Copyright IBM Corp. 2001 209

rarf.read(buffer); // reads the last record (record n-1)

rarf.positionFirst();

rarf.positionNext();

rarf.read(buffer); // reads the second record (record 1)

rarf.seek(5L);

rarf.read(buffer); // reads the sixth record (record 5)

rarf.close();

A.1.3 Read a record from a keyed access record file

IKeyedAccessRecordFile karf =

new KeyedAccessRecordFile("//JOE.KSDS");

IRecordFile index = karf.getPrimaryIndex();

// or: IRecordFile index =

// karf.getAlternateIndex("//JOE.KSDS.AIX");

byte[] buffer = new byte[JRIO_MAX_RECORD_LENGTH];

for(;;)

{

// optional: karf.positionForward(key);
210 VSAM Demystified

// or: karf.positionForwardGE(key);

int bytesRead = karf.read(index, buffer);

if (bytesRead != JRIO_READ_EOF)

{

// process(buffer);

}

else

{

break;

}

}

karf.close();

A.1.4 Read a record from a random access record file

IRandomAccessRecordFile rarf =

new RandomAccessRecordFile("//JOE.SEQ");

byte[] buffer = new byte[JRIO_MAX_RECORD_LENGTH];

for(;;)

{

// rarf.seek(recNo);
Appendix A. Sample code 211

int bytesRead = rarf.read(buffer);

if (bytesRead != JRIO_READ_EOF)

{

// process(buffer);

}

else

{

break;

}

}

rarf.close();

A.1.5 Update a record in a keyed access record file

IKeyedAccessRecordFile karf =

new KeyedAccessRecordFile("//JOE.KSDS",

; JRIO_READ_WRITE_MODE);

IRecordFile index = karf.getPrimaryIndex();

karf.read(index, buffer);

// modify non-key field(s) in buffer

karf.update(index, buffer);

karf.close();
212 VSAM Demystified

A.2 Accessing the VSAM Shared Information (VSI)

You can code the following instructions to get the length and address of VSI
the data to be sent to anotherOS/390 image:

• Load ACB address into register RY.

• To locate the VSI for a data component:

L RX,04(,RY) Put AMBL address into register RX

L 1,52(,RX) Get data AMB address

L 1,68(,1) Get VSI address

LH 0,62(,1) Load data length

LA 1,62(,1) Point to data to be communicated

• To locate the VSI information for an index component of a key-sequenced
data set:

L RX,04(,RY) Put AMBL address into register RX

L 1,56(,RX) Get index AMB address

L 1,68(,1) Get VSI address

LH 0,62(,1) Load data length

LA 1,62(,1) Point to data to be communicated

Similarly, the location of the VSI on the receiving processor can be located.
The VSI level number must be incremented in the receiving VSI to inform the
receiving processor that the VSI has changed. To update the level number,
assuming the address of the VSI is in register 1:

LA 0,1 Place increment into register 0

AL 0,64(,1) Add level number to increment

ST 0,64(,1) Save new level number
Appendix A. Sample code 213

All processing of the VSI must be protected by using ENQ/DEQ to prevent
simultaneous updates to the transmitted data.

A.3 Sample program to extract information from SMF record type 64

The sample below can be used to find more information about jobs using
heavily VSAM data sets. It is based on SMF record type 64 issued when data
set is closed.

For those data sets, it extracts the following information:

• Data set name, jobname, ddname

• The kind of access used such as: direct (DIR), sequential (SEQ) or SKIP

• When direct access, if the records were accessed by KEY or RBA

• The buffering technique used (LSR or NSR)

• If the data set was open for input (IN) or output (OUT)

• For LSR, with direct access, shows if defer write was used (DF WTR)

• Where VSAM buffers were located (above 16M, R31 or below 16M, R24)

• Total number of free control intervals in the data component at close

• The number of EXCPs from open to close

//YOURJOBN JOB ’(VSAM - MHL)’,
// REGION=4M,NOTIFY=&SYSUID
//*--*
//* SMF REPORT - COMPILING JOB
//*--*
//COMP EXEC ASMACL,DPRTY=9,
// PARM.L=’LIST,LET,XREF,MAP,AMODE=31,RMODE=24’
//C.SYSIN DD *

TITLE ’ READ SMF RECORD TYPE 64 AND EXTRACTS REPORT’
* *
* FUNCTION - *
* THIS PROGRAM READS SMF RECORD TYPE 64 AND EXTRACTS *
* INFORMATIONS FOR DATA SETS THAT HAD MORE THAN 10,000 EXCPS *
* (YOU CAN ALTER BY PARM) FROM OPEN-TO-CLOSE. *
* REPORT: *
* DATA SET NAME, JOBNAME, DDNAME, SYSTEM ID, HOW MANY EXCPS *
* FROM LAST OPEN-CLOSE, BUFFERING TECHNIQUE USED (NSR/LSR), *
214 VSAM Demystified

* LOCATIONS OF BUFFERS (ABOVE: R31 OR BELOW: R24), THE NUMBER*
* OF FREE CONTROL INTERVALS, IF THE DATA SET HAS EXTENDED *
* FORMAT (EXT.FORMAT) OR NOT (NON-EF), IF THE DATA SET WAS *
* OPEN FOR INPUT (IN) OR OUPUT (OUT), FOR LSR AND DIRECT *
* ACCESS, IF WAS USED DEFER WRITE (DF WTR), FOR DIRECT ACCESS*
* IF THE RECORDS ARE ACCESSED BY KEY OR RBA *
* *
* *
* MACROS USED: OPEN, CLOSE, IDASMF64 *
* *
* PARM: NUMBER OF EXCPS BELOW NOT TO GENERATE REPORT *
* LIMIT VALUE: 999999999 *
* *
* RETURN CODES: 64 - PARM WITH MORE THAN 9 BYTES *
* 32 - PARM NOT NUMERIC *
* 32 - PARM NOT NUMERIC *
* OR CLOSE ERROR CODE *
* *
* ABENDS: ON OPEN ERROR, ABEND CODE IS OPEN ERROR CODE *
* *
* JCL TO EXECUTE THIS PROGRAM: (CUSTOMIZE PARM VALUE) *
* //READSMF EXEC PGM=SMF64,PARM=40000 *
* //SMF DD DISP=SHR,DSN=SMFDUMP_DATASET *
* //REPORT DD SYSOUT=*,LRECL=140 *
* *
* *
* JCL TO GENERATE SMFDUMP_DATASET: *
* //STEP EXEC PGM=IFASMFDP *
* //INDD1 DD DSN=SYS1.XXXX.MANX,DISP=SHR *
* //OUTDD1 DD DSN=SMFDUMP_DATASET,DISP=(,CATLG), *
* // LRECL=32760,RECFM=VB,BLKSIZE=0, *
* // UNIT=SYSDA,SPACE=(TRK,(30,10),RLS *
* //SYSPRINT DD SYSOUT=* *
* //SYSIN DD * *
* INDD(INDD1,OPTIONS(DUMP)) *
* OUTDD(OUTDD1,TYPE(64)) *
* /* *
* *
SMF64 CSECT
SMF64 AMODE 31
SMF64 RMODE 24

STM R14,R12,12(R13) * LINKAGE CONVENTION
LR R12,R15
USING SMF64,R12 * BASE REGISTER
LA R15,SAVE * LINKAGE CONVENTION
Appendix A. Sample code 215

ST R15,8(R13)
ST R13,SAVE+4
LR R13,R15 * R13 LOCAL SAVEAREA
L R4,0(R1)
LH R1,0(R4)
LTR R3,R1 * ANY PARM?
BZ OPEN * NO. USE DEFAULT VALUE
LA R15,64 * RC=64 PARM TOO HIGH
LA R1,9 * MAX LENGTH
CR R3,R1
BH RETURN
BCTR R3,0 * FOR EXECUTE
SRL R15,1 * RC=32 PARM NOT NUMERIC
EX R3,VALID
BNZ RETURN
EX R3,PACK
CVB R3,DOUBLE
ST R3,BELOW

OPEN OPEN (SMFDUMP,,REPORT,(OUTPUT))
LTR R3,R15
BNZ ER_OPEN
PUT REPORT,HEADER

INITPAGE LA R8,55 * LINES PER PAGE
READ GET SMFDUMP

LR R10,R1 * IDASMF64
USING SMFRCD64,R10
CLC SMF64LEN,H6 * AVOID S04C FOR SMALL RECORDS
BNH READ
CLI SMF64RTY,64
BNE READ
TM SMF64RIN,X’88’ * CLOSE?
BNM READ
TM SMF64DTY,X’80’ * DATA SET?
BNO READ
TM SMF64DTY,SMF64RLS * RECORD LEVEL SHARED?
BO READ
LH R2,SMF64ESL * LENGTH OF EXTENT ENTRY PORTION
LA R9,0(R2,R10)
MVC JOBNAME,SMF64JBN
DROP R10
USING SMFRCD64,R9
CLC SMF64DEP,BELOW * # EXCPS HIGHER THAN BELOW LIMIT?
BL READ
TM SMF64MC1,X’01’ * USER MANAGEMENT OF I/O BUFFERS?
BO READ
216 VSAM Demystified

TM SMF64MC3,X’30’ * ICI OR GSR?
BM READ
LA R7,MISC
TM SMF64MC1,X’08’ * DIRECT ACCESS?
BNO S_SEQ
MVC 0(L’WDIR,R7),WDIR
LA R7,L’WDIR+1(R7)
TM SMF64MC1,X’80’ * RECORD ACCESSED BY KEY?
BNO S_RBA
MVC 0(L’WKEY,R7),WKEY
LA R7,L’WKEY+1(R7)
B S_BTECH

*
S_RBA TM SMF64MC1,X’40’ * RECORD ACCESSED BY RBA?

BNO S_BTECH
MVC 0(L’WRBA,R7),WRBA
LA R7,L’WRBA+1(R7)
B S_BTECH

*
S_SEQ TM SMF64MC1,X’10’ * SEQUENTIAL ACCESS?

BNO S_SKIP
MVC 0(L’WSEQ,R7),WSEQ
LA R7,L’WSEQ+1(R7)
B S_BTECH

*
S_SKIP TM SMF64MC2,X’10’ * SKIP SEQUENTIAL ACCESS?

BNO READ
MVC 0(L’WSKIP,R7),WSKIP
LA R7,L’WSKIP+1(R7)

*
S_BTECH MVC 0(L’WNSR,R7),WNSR

TM SMF64MC3,X’40’ * LSR?
BNO I_MISC
MVC 0(L’WLSR,R7),WLSR

I_MISC LA R7,L’WLSR+1(R7)
TM SMF64MC1,X’04’
BO IN
MVC 0(L’WOUT,R7),WOUT
LA R7,L’WOUT+1(R7)
B S_DEFWR

*
IN MVC 0(L’WIN,R7),WIN

LA R7,L’WIN+1(R7)
S_DEFWR TM SMF64MC3,X’48’ * LSR AND DEFERRED-WRITE?

BNO S_BUF31
Appendix A. Sample code 217

MVC 0(L’WDEFW,R7),WDEFW
LA R7,L’WDEFW+1(R7)

*
S_BUF31 MVC 0(L’WBUF,R7),WBUF

TM SMF64MC3,X’01’ * BUFFERS 31 BITS ADDRESSING?
BNO I_BUFF
MVC L’WBUF-2(2,R7),=C’31’

I_BUFF LA R7,L’WBUF+1(R7)
L R5,SMF64NFS * UNUSED CONTROL INTERVALS AT OPEN
L R1,SMF64DFS * CHANGE IN UNUSED CI AT CLOSE
AR R5,R1
L R1,SMF64DCI * CI SIZE

*
DROP R9
USING SMFRCD64,R10
TM SMF64DTY,SMF64EA
BO CI_OK
LA R4,0 * IF NON-EXTENDED ADDRESSABLE
DR R4,R1 * CONVERT TO NUMBER OF CI

CI_OK CVD R5,DOUBLE
MVC 0(L’WFREE,R7),WFREE
MVC L’WFREE(8,R7),MODEL
ED L’WFREE(8,R7),DOUBLE+4
LA R7,L’WFREE+9(R7)
MVC 0(L’WNEF,R7),WNEF * MOVE NON-EXTENDED

S_EXTF TM SMF64DTY,SMF64EF * EXTENDED FORMAT?
BNO NON_EF
MVC 0(L’WEXTF,R7),WEXTF
LA R7,L’WEXTF+1(R7)
B MV_DATA

*
NON_EF MVC 0(L’WNEF,R7),WNEF * MOVE NON-EXTENDED

LA R7,L’WNEF+1(R7)
*
MV_DATA MVC SYSID,SMF64SID

MVC JOBNAME,SMF64JBN
MVC DSN,SMF64DNM
DROP R10
USING SMFRCD64,R9
MVC DDNAME,SMF64DDN
L R2,SMF64DEP * # EXCPS
CVD R2,DOUBLE
MVC EXCPS,MODEL
ED EXCPS,DOUBLE+2
PUT REPORT,RECORD
218 VSAM Demystified

MVI RECORD,X’40’
MVC RECORD+1(L’RECORD-1),RECORD FILL WITH BLANKS
BCT R8,READ
PUT REPORT,HEADER
B INITPAGE
DROP R9

*
CLOSFILE CLOSE (SMFDUMP,,REPORT)
RETURN L R13,SAVE+4

L R14,12(R13)
LM R0,R12,20(R13)
BR R14

*
ER_OPEN WTO ’OPEN ERROR’,ROUTCDE=11

ABEND (R3),,STEP
*
PACK PACK DOUBLE,2(0,R4)
VALID TRT 2(0,R4),TBNUM

* DCBS

SMFDUMP DCB DSORG=PS,EODAD=CLOSFILE,MACRF=(GL),DDNAME=SMF
REPORT DCB DSORG=PS,MACRF=(PM),DDNAME=REPORT,LRECL=140,RECFM=FBA

* AREAS DE TRABALHO

SAVE DC 18F’0’
DOUBLE DS D
BELOW DC F’00200’ CUSTOMIZE - DEFAULT 10,000 EXCPS
H6 DC H’6’
HEADER DC 140C’ ’

ORG HEADER
DC C’1’
ORG HEADER+1
DC C’DATA SET NAME’
ORG HEADER+46
DC C’JOBNAME’
ORG HEADER+55
DC C’DDNAME’
ORG HEADER+71
DC C’EXCPS’
ORG HEADER+78
DC C’MISCELLANEOUS’
ORG HEADER+131
DC C’SYSTEM ID’
Appendix A. Sample code 219

ORG
DS 0F

RECORD DS 0CL140
DC 140C’ ’
ORG RECORD+1

DSN DS CL44
DS CL1

JOBNAME DS CL8
DS CL1

DDNAME DS CL8
DS CL1

EXCPS DS CL13
DS CL1

MISC DS CL56
DS CL1

SYSID DS CL4
ORG

MODEL DC X’40202020202020202020202020’
WSEQ DC C’SEQ’
WDIR DC C’DIR’
WSKIP DC C’SKIP’
WEXTF DC C’EXT.FORMAT’
WNEF DC C’NON-EF’
WBUF DC C’BUFF=R24’
WDEFW DC C’DF WTR’
WLSR DC C’LSR’
WFREE DC C’FREE CI:’
WNSR DC C’NSR’
WIN DC C’IN’
WOUT DC C’OUT’
WKEY DC C’KEY’
WRBA DC C’RBA’
TBNUM DC 256X’01’

ORG TBNUM+X’F0’
DC 10X’00’
ORG

* DUMMIES E EQUATES

LTORG
YREGS
DSECT
IDASMF64
END SMF64

//L.SYSLMOD DD DSN=YOUR.LOADLIB.LIBRARY,DISP=SHR
220 VSAM Demystified

//L.SYSIN DD *
ENTRY SMF64
NAME SMF64(R)

/*
Appendix A. Sample code 221

222 VSAM Demystified

Appendix B. Miscellaneous performance items

In this appendix we describe the lab environment used for our measurements
throughout the book, a general discussion on caching, and common error
messages indicating broken data sets and output from the EXAMINE
command.

B.1 Our laboratory

We ran a few experiments in order to clarify some performance and usability
aspects of VSAM. However, it happened in a non-controlled environment,
where we cannot guarantee the same level of multiprogramming, and the
same load in our DASD controller. Nevertheless, the results are sound, if you
take into consideration such variables as number of EXCPs, I/O Connect
time, and CPU time in order to compare the runs.

The jobs are totally I/O bound as read-and-forget and write-from-thin-air.

All the experiments are made in an ESS controller with a relative load.

B.1.1 General lab description

The majority of them are accessing a KSDS master cluster with the following
characterisitcs:

• LRECL = 300 bytes

• Keylength = 8 bytes

• Number of records = 450,002 (not uniform key values distribution)

• Free Space = 10% 10%

• Data component CI size 4096

• Index component CI size choosen by VSAM

There is also a physical sequential file where the 300-bytes records
represents updates, inclusions and deletions in the master. They can be
organized sequently or randomly (according to the experiment). About 10% of
them have repeated keys causing revisits to the same record in the master.
There are holes in the key values and some of them are cluster to emulate
mass insertion or deletion.

DIRECT GET: 50000 records, 20%
© Copyright IBM Corp. 2001 223

GET SEQUENTIAL: Reads sequentially all records of the VSAM data set
(450,002 records), with minimum record processing. Tests executed before
insertions, so there were 12 record per control interval

UPDATE Program: insertions(3%) update (30%). Splits after insertions:

• Data component:

- control interval: 5457

- Control Area: 61

• Index component:

- Control interval: 61

- Control area: 1

B.1.2 What do we measure?

To compare the performance results among the runs, we select the following
variables:

• Total I/O connect time

Connect time is when the channel is transferring data from or to the cache.
As we keep in all the experiences, always the same volume located in the
same controller and accessed by the same channel type (so, always the
same data rate), the connect time is an indirect measurement about how
many bytes were transferred along the I/O operations. Then, the only way
of decreasing the total I/O connect time is by moving less data to or from
storage.

Variations in the load of the controller should not affect this value.

The total connect time was captured with GTF.

• Total I/O Disconnect time

Disconnect time occurs when the channel is not doing activities related to
the execution of the channel program along the I/O operation. It means
that the target record for a read is not in the cache and the disk access is
a must. Then, the only ways of decreasing the total I/O disconnect time is
by moving less data to or from storage or improving the use of the cache

Variations in the load of the controller should affect this value.

The total diconnect time was captured with GTF.

• Number of EXCPs

In SMF account information for SAM data sets, one EXCP equates one
physical block transfer.
224 VSAM Demystified

For VSAM data sets, one EXCP equates to one real I/O operation for data
or index. It is not true, that the number of EXCPs for VSAM measures the
number of transferred CIs. Therefore, one EXCP in may mean more than
one CI being tranferred. The number of CIs per I/O depends very much in
the number of buffers and in the buffering technique. Consequently, the
number of EXCPs is not repetitive, that is, the same job reading the same
data set may present a different number of EXCPs. The reasons justifying
the number of I/O operations (instead of CIs) are:

- We can measure the VSAM capacity in saving I/O operations and
consequently saving TCB and SRB time.

- The number of I/O transferred CIs can be catched from LISTC in the
catalog or from SMF record 64

In our measurements, the number of EXCPs corresponds to the number of
I/O operations.Variations in the load of the controller should not affect this
value.

• Elapsed time

Elapsed time is the wall clock time to run the job used in the test. If the I/O
is faster, in I/O bound job the elapsed time should be less.

Variations in the load of the controller and the system should affect this
value.

• Total CPU time (TCB and SRB)

All the runs are totally I/O bound, meaning no processing at all. Then the
TCB time can be charged to the preparation of the I/O operation, including
VSAM buffer pool management. SRB time here is spent along I/O
interrupts processing only.

Variations in the load of the controller and system should affect very mildly
this value.

• Total number of transferred bytes

Here, we measured only the data bytes, excluding the index bytes. The
only way of decreasing it is by moving less data to or from storage.

Variations in the load of the controller should not affect this value.

The total number of transferred bytes was captured with GTF.
Appendix B. Miscellaneous performance items 225

B.1.3 DASD cache concepts

A cache is a fast storage (no mechanical movement) located in the DASD
controller with two functions: to minimize access to disks (by having hits) and
to serve as a speed matching buffer to synchronize elements with different
speeds as channels and disks in a cache miss. In this appendix the word disk
does not have the same meaning of DASD. Disk implied the RAID media
(FBA, SSA or SCSI) used by modern controllers. DASD still means the logical
3390/3380.

In order to have random hits (saving disk access) for reads and writes, the I/O
workload must revisit its data, however in certain cases it does not happen. In
this case such workloads are called cache unfriendly. Usually, we may have
two types of hits for VSAM data, when the application revisits:

• Exactly the same logical record in a CI already in cache

• The same data CI (already in cache) because other logical record (a sort
of lucky)

For sequential access, it is important to say that, cache does not save data CI
disks I/O operations. The cache only tries to match the speed of the disks and
channels.

With the new controllers a cache miss implies accessing the RAID disks and
not the logical 3390/3380 device (which do not exist physically). Because the
mapping between the 3390/3380 tracks to the FBA RAID disks is not
externalized, it is not important anymore the relative location of files in order
to avoid long Seeks or even RPS misses.

It is interesting to note that heavy cache access reduces DASD skew
(unequal 3390/3380 device utilization) because data formerly in heavily used
devices now became electronically accessible due to the LRU algorithm.
Refer in DASD Activity report this phenomena:

DASD Activity Report

I=92% DEV ACTV RESP IOSQ ---DELAY--- PEND DISC CONN
VOLSER NUM MX LCU RATE TIME TIME DPB CUB DB TIME TIME TIME
TOTTSJ 256C 005A 0.024 11 0 0.0 0.0 0.0 0.2 8.2 2.2
TOTJS1 250C 0059 5.764 6 0 0.0 0.0 1.2 1.5 0.1 4.7
TSMS50 650D 4 0144 139.6 1 0 0.0 0.0 0.0 0.3 0.0 0.7
226 VSAM Demystified

Increasing the I/O rate, decreases the disconnect time (less the disconnect
more hits in cache) due to the LRU algorithm is keeping in cache the most
used elements.

There are two types of cache: volatile and non-volatile (NVS). NVS is used to
keep DFW, dual copy and XRC remote copy records. In this chapter we use
the word cache meaning the volatile cache and NVS for the non-volatile.

The cache is made of CMOS DRAM storage for Data and Directory. The
directory entries describes the data elements (4 KB in ESS) and are ordered
in the following queues:

• LRU (pointing to active data elements)

• Free (available for staging from disk or writes)

• Pinned (changed data in cache and the respective disk is not available)

• Defective

Destage is the movement from cache to disk caused by previous DFW and
CFW writes (to be covered later) and it is asynchronous with the I/O operation
which excuted the writes. By the way, demotion is not a synonym of
destaging. Demotion means to take a data element out from cache. If there is
a valid copy in disk there is not a destage. If not, a destage is done. There are
three types of destaging:

• To relieve contention, when NVS or Cache become full. Controlled by
modified LRU algorithms, when the percentage of NVS occupancy is
greater than X%. If greater than Y% (Y>X), then the DFW I/O operation
bypass the NVS cache going synchronously from volatile cache to disk
(called DFW bypass)

• Done in background by the controller when the percentage of NVS
occupancy is above another threshold Z% (Z < X)

• Forced by Z EOD command or by an hardware error

The amount of data destaged is usually more than one 3390/3380 track. A
smart controller can Identify other records changed in adjacent tracks of the
record to be destaged and destage all of them. It saves rotational delays in
the disks and bypass the RAID write penalty.

Stage is the movement from DASD to cache, it can be synchronous (a read
miss) for a random request or asynchronous for a sequential look ahead
read. Pay attention that random and direct have the same meaning.
Appendix B. Miscellaneous performance items 227

A cache hit may overlap with staging/destaging operations, for the same
3390/3380 logical device. It is possible to have concurrent access to same
3390/3380 device data but not in the same track, for example, one hit in the
cache and an asynchronous destage in the disks back storage (not in the
same 3390/3380 track). This is not the ESS PAV feature, because here there
is just one active I/O operation, that is the one with the hits in the cache, the
destage is just controller rhousekeeping.

Controller accounts data about number of I/O operations, hits, misses,
destages, in a volume or in a data set basis. These values are shown by
IDCAMS LIISTDATA command, by RMF Cache report and used in SMS for
Dynamic Caching for data sets.

Set Subsystem CCW activates the use of caching in the controller
(subsystem) and in individual volumes. This CCW allows cache modes as
normal, DFW and CFW. All these modes may be asked explicitly by software
through the Define Extent CCW (per each I/O operation), in some cases the
controller can adaptively change the mode due to the observed pattern of
access. Following is the description of such CCW.

Define Extent CCW provides a 16 bytes parameters, which define limits on
subsequent operations (extent information, avoidance of writes, for example),
provide a blocksize value, and specify caching control mode (or hints) for the
channel program. The caching mode have the granularity of I/O operation.
These modes are not totally mutual exclusive, and the same I/O operation
may have more than one mode. Following are the modes:

• Track Level Cache (TLC)

• Record Level Cache (RLC)

• Sequential:

- Reads:

• Sequential Access

• Sequential Pre-stage

- Writes

• Least Recently Used (LRU)

• Normal Caching

• CFW

• DFW

With the possibility of Quick Writes
228 VSAM Demystified

• Bypass Cache

• Inhibit Cache Loading

B.1.4 Cache Modes

Following is the explanation of these modes:

• Track Level Cache (TLC)

In TLC the unit of transport between cache and disks are the 3390/3380
tracks. TLC is more adequate to sequential. When in TLC mode the
3390/3380 track is staged in cache in one pass (if first miss is inrecord
zero (R0)) or in two pass (if first miss is not in R0). RVA only has track
level cache because the compact/compress data cause little traffic when
moving logical 3390/3380 tracks.

• Record Level Cache (RLC)

In RLC the unit is the referred logical 3390/3380 physical record. RLC is
very adequated to random (also called direct) processing.

Let us explain what do we mean by “logical 3390/3380 physical record”.
The word logical indicates that the 3390/3380 does not real exist. The
word physical indicates that we are talking about the physical record (the
block) in the logical 3390/3380 track...

RLC improves performance for applications that do not exhibit good
locality of reference and where the cost of track caching out weights the
benefits. RLC reduces the costs associated with cache miss I/Os by
staging less data into cache (less cache polution), which frees the volume
and other activity more quickly. Reading less data into cache also enables
data to stay in cache longer, which increases the chances of future cache
hits.

ESS controller is able to switch from one to the other depending on the
access pattern, independently of the Define Extent CCW.

RLC is mutually exclusive from TLC

RLC can be activated for VSAM SMS managed maybe-cache data sets.
SMS via DCME decides in Define Extent when to use RLC for reads.
Refer to B.1.6, “Using cache in an SMS data set” on page 236. On top of
deciding to enable or to disable the cache for maybe-cache SMS data
sets, SMS picks up between RLC or TLC for reads.

• Sequential

When in sequential mode, the controller uses the cache just as a speed
matching buffer, to synchronize different speeds. There are two types:
Appendix B. Miscellaneous performance items 229

- Sequential Read

In sequential read mode the controller does the pre-staging of a certain
number of future referenced logical 3390/3380 tracks. After used, the
tracks are or not demoted from cache depending on the sub mode:

• Sequential Access, where the used data is a strong candidate to be
demoted

• Sequential Pre-stage, where the used data is protected by the LRU
algorithm

Sequential read can be activated:

- Explicitly by software through Define Extent CCW (also called
sequential hint), as declared by VSAM ESDS for Sequential Access.
KSDS/VRRDS in certain conditions declare Sequentila Pre-stage

- By sequential detect, where the controller detects sequential access
(six sequential referred logical 3390/3380 physical tracks in the ESS).

Because KSDS/VRRDS VSAM organizations (in certain conditions) do
not use the Define Extent. Then, in this case, it is interesting to avoid
CI /CA splits in data sets usually processed sequently. Splits make the
logical sequence different from the physical sequence, and the
controllers only detects the physical sequence pattern

• Least Recently Used (LRU)

LRU is not properly a mode, but a technique to maintain in the cache the
most referenced elements. It is the major algorithm to control cache
demoting, admiting that, if an element was referenced in the past, it is
going to be again in the future. LRU is automatically set off when
sequential caching, inhibit cache load and bypass cache modes are active

• Normal Caching

In this mode the NVS cache is not used. There are four cases to consider
in this mode:

- For a read hit, there is a data transfer from cache to channel followed
by a channel end (CE)/ device end (DE) I/O interrupt. The directory
entry is LRU update (meaning that the data is to be kept in cache for a
while).

- For a read miss, the channel is disconnected, the disk is accessed to
stage data to cache (here, we may have the delay caused by the disk
being already busy or all lower interfaces are busy). After that, the
channel is reconnected and the data is transferred to channel from
230 VSAM Demystified

cache, CE/DE I/O interrupt, stage rest of track (if in track mode), LRU
update.

If all the serving channels are busy, there is not an RPS miss, because
the data is already in the cache. With the new controllers, RPS misses
only occur when the internal path to disks are busy and the disk needs
a new revolution.

- For a write hit, because the NVS cache is not used, it is like a miss.
The channel moved data to volatile cache and disconnects. The disk is
accessed synchronously to write data (here, we may have the delay
caused by the disk being already busy or all lower interfaces are busy).

The word synchronously means that the write to disk is done without
the end of the I/O operation be posted to the application.

After the write to disk, the channel is reconnected and CE/DE I/O
interrupt is presented. LRU update (meaning that the data is to be kept
in cache for a while)

- For a write miss the channel move data to cache and disconnects. The
disk is accessed synchronously to write data (here, we may have the
delay caused by the disk being already busy or all lower interfaces are
busy).

The word synchronously means that the write to disk is done without
the end of the I/O operation be posted to the application.

After the write to disk, the channel is reconnected and CE/DE I/O
interrupt is presented. No LRU update, meaning that the cache copy if
the data is ready to be demoted

• Cache Fast Write (CFW)

Is used for temporary data sets and consequently does not use the NVS
for writes. It must be allowed by the Set Subsystem CCW issued by
IDCAMS.

- For Reads and Write Miss is identical to Normal Caching.

- For a write hit, the data is transfer from the channel to the cache
followed by a CE/DE I/O interrupt and the directory entry is LRU update
(meaning that the data is to be kept in cache for a while). Later on
asynchronously the data will be destaged to disks.

Used by Sort for temporary files and for creating PDSE members (before
the Stow) when the Hiperspace is full. The exploiter must declare CFW in
the Define Extent CCW.
Appendix B. Miscellaneous performance items 231

• DASD Fast Write (DFW)

DFW allows the use of the NVS cache for writes. It avoids accessing disks
for a write hit. It must be allowed by the Set Subsystem CCW issued by
IDCAMS.

- For Reads is identical to Normal Caching.

- For a write hit, the data is transfer from the channel to the cache and
NVS, followed by a CE/DE I/O interrupt and the directory entry is LRU
update (meaning that the data is to be kept in cache for a while). Some
modern controllers as ESS sends the CE/DE earlier with one copy of
the data in the NVS (other copy in the channel adapter buffer) doing
the copy to the volatile cache immediately after the CE/DE.

Later on and asynchronously the data will be destaged to disks.
However, if the NVS cache is under stress the controller is smart
enough in sending the data from voltile cache directly to disks
(synchronously). This situation is called DFW bypass and the channel
stays disconnected along this data transfer. If you recall the dam story
is like creating a bypass in the dam...

- For a write miss is identical to normal mode, with the difference that the
LRU is updated.

• Almost 100% DFW Hits (Quick writes)

This mode allows the use of the NVS cache for writes. It avoids accessing
disks for a write hit and almost 100% of the write misses. In certain
controllers, its logic is included in the RLC licensed internal code (LIC).

Almost 100% DFW hits is also called "quick writes". It allows a DFW miss
turn to a hit (provided that adequate NVS space is available).

The reason causing the access of disks for a write data miss in a DFW
mode is the verification of the record length. To clarify this point refer to
Figure 27 and follow the description of the existent two types of write
CCWs.

- Write format, also called write count-key-data, formats the 3390/3380
track by overlaying the old records in the track and creating a count
with the respective data (usually with a zero content), the rest of the
track is erased. The length of the data record is informed in the write
count-key-data CCW and copied in the count. In this case, the previous
record data length is not important because it is overlaid.

All the write format I/O operations are considered a write hit.
232 VSAM Demystified

- Write modified, also called write data, change the contents of the data
portion of a pre-formatted record which length is already described in
the count. The length of the data record is also informed in the write
data CCW. Any mismatch between this length and the one already
specified in the count of the formatted record is posted by the channel
(to the application) and in some cases, it may stop the execution of the
channel program. Then is clear the need of accessing the 3390/3380
track in a DFW write modified miss because the controller is not able to
verify (and compare) the length in the write modified CCW and the
count. On the other hand is now clear why the write format is always a
hit, because there is no need of such verification.

Figure 27. Types of writes

Write Format (CKD)

HA C D C D

R0 R1

HA C D C D C D

R0 R1 R2

(D)Channel

Always
Hit!

I need to
match the
length in disk

Write
Format

C D

Write
Modified

Controller

Controller

(C & D)Channel

Cache

D

NVS

Cache

D

NVS

D

Write Modified (D)
Appendix B. Miscellaneous performance items 233

For quick writes the controller must know or be able to predict the length of
the record avoiding the access to the disks.

Quick writes is implemented in two sub-modes associated with record
level cache. Remember that in some IBM controllers, quick writes are
associated with the record level cache LIC:

- Record Level Cache I:

It is a joint VSAM/controller implementation.

Because VSAM is a trustable partner (regular data format) all writes
become quick writes, that is, the controller decides not to go to disk to
verify the data record length. This function benefits IMS, DB2 and CICS
users of VSAM. The data set could be SMS or not, it requires
DFSMS/MVS 1.2 or PTF equivalent.

- Record Level Cache II:

It is non-VSAM adaptive (the controller does by itself), with no Define
Extent CCW software intervention. When RLC II is activated it cannot
be disabled. In the first access to the record there is a disk access
(miss) and the record length is moved and kept in cache for the future
requests. It aims to reach "almost 100% writes hits". The controller
automatically determines whether to use the track cache algorithm as it
processes I/Os to thevolumes withcache active.RLC II requires:

• Volume behind a controller with RLC II installed

• TLC enabled for that volume

• DFW enabled for that volume

• Inhibit Cache Load (ICL)

If a read hit, read from cache and LRU update. If a read miss or a write
access the disks through volatile cache, no LRU update. Then, cache
space is not allocated for any new tracks from DASD. Write operations
that do not require access to DASD are not inhibited by this setting.

Used by DFDSS, DFSORT (Sortin), SMS (never-cache and some of the
maybe-cache data sets). As a general rule, it maybe used by an
application which knows that the record to be requested is not going to be
used in the near future (as for cache unfriendly accesses).

Ignore ICL is an option set in VPD, when your workload is not aware of a
huge cache size

• Bypass Cache
234 VSAM Demystified

Where the I/O request must be executed in the disks (even if the data is in
the cache). However, the data always pass through cache without LRU
update, consequently the copy is ready to be demoted. If a hit in the
cache, the LRU is updated. Cache images of tracks modified on the
device will be invalidated. Tracks modified in cache but not on DASD are
destaged to DASD before access is allowed. For Duplex volumes this
includes destaging to both devices. DASD Fast Write operation is
disabled with this attribute active.

It is used by ICKDSF, paging, and Write Check access method option.

Ignore BYP is an option set in VPD, being used when your workload is not
aware of a huge cache size

B.1.5 Using cache modes in a non-SMS data set

An I/O operation towards a non-SMS data set is able to use some of the
cache modes. In order to do that, you must use IDCAMS Setcache command
to activate:

• Globally in the controller:

- Cache in general

- DFW (or the use of NVS)

- CFW

RMF in Cache Activity report shows the result of such operation:

Cache Subsystem Status

--
CACHE SUBSYSTEM STATUS

--

SUBSYSTEM STORAGE NON-VOLATILE STORAGE STATUS

CONFIGURED 256.0M CONFIGURED 8.0M CACHING
AVAILABLE 254.9M PINNED 0.0 NON-VOLATILE STORAGE
PINNED 0.0 CACHE FAST WRITE
OFFLINE 0.0 IML DEVICE AVAILABLE
Appendix B. Miscellaneous performance items 235

• Locally in each volume:

- Normal cache

- DFW (or the use of NVS)

- Dual Copy

RMF in Cache Activity report shows the result of such operation:

Cache D

These options are passed to the controller by IDCAMS. Without SMS all the
data sets in volume follow these rules (normal or DFW). The other cache
modes must be declared explicitly by the requester through an IOS, which
builds the Define Extent CCW.

B.1.6 Using cache in an SMS data set

SMS uses the Define Extent CCW to set some cache modes along the I/O
operation for an SMS data set. If there is a conflict between Define Extent
and IDCAMS volume setting the more restrictiveoptionprevails.

For example: IDCAMS says non-DFW for the volume and Define Extent says
DFW for the I/O operation, then it will be non-DFW.

However, there are certain cache modes not set by SMS as bypass cache
and CFW. In this case the requester should use interface directly with IOS in
order to have theses options in the Define Extent CCW.

B.1.6.1 Cache usage attributes
An opened SMS data set, may have one of three cache usage attributes, as
DASD cache is concerned:

• Must-cache data set, which uses cache/NVS for the I/O operations

• Never-cache data set , which does not use cache (only for buffering) and
does not use NVS. The ICL mode is requested in Define Extent CCW

• May-cache data set, which uses cache/NVS depending on the cache/NVS
constraints

VOLSER D83STE NUM 0D84
--

CACHE DEVICE STATUS
--

CACHE STATUS DUPLEX PAIR STATUS

CACHING - ACTIVE DUPLEX PAIR - NOT ESTABLISHED
DASD FAST WRITE - ACTIVE STATUS - N/A
PINNED DATA - NONE DUAL COPY VOLUME - N/A
236 VSAM Demystified

The same data set may have one of the above attributes for sequential
accessing mode and a different one for direct accessing mode. This is also
true for read access and write access. These attributes are based in the SMS
storage class (SC) installation parameters (MSR for Direct, MSR for
sequential or BIAS respectively). MSR is the desired I/O service time in
milliseconds and BIAS the expected dominance of reads or writes operations.

.The cache usage attributes are assumed at open time, for a data set. These
cache attribute is kept constant till the data set be closed. Refer to Figure 28.
that xplains how the cache usage attribute is determined based in the MSR
value.

Figure 28. Association between MSR and cache usage attributes

Where NC is the native capability in milliseconds of the 3390/3380 logical
volume without DASD cache for a 4-Kb data movement. That is, the
theoretical average amount of milliseconds to execute a channel program
without using the cache. NC depends on the DASD device type (3390 or
3380). The values of NC has not been published so far. Therefore, to have a
must-cache data set, you may declare a MSR value below 10 milliseconds
and to have a may-cache data set something above 100 milliseconds.

In the present design there is not a practical difference between a two or a
five milliseconds, assuring that both values are below NC. The same is true
for the values above NC. The fact that 3390 or 3380 does not exist anymore
does not play in the determination of the cache usage attributes, if you
understand how it works.

If the BIAS parameter is indicating R (a dominance of reads) and MSR is less
than NC, then the cache usage attribute is must-cache for reads and
may-cache for writes.

MUST-CACHE MAY-CACHE
-->

NC MSR in milliseconds

MUST-CACHE MAY-CACHE
---------------------------!--

NC MSR in milliseconds

NOTE: If MSR = 999 then NEVER-CACHE.
Appendix B. Miscellaneous performance items 237

If the BIAS parameter is indicating W (a dominance of writes) and MSR is
less than NC, then the cache usage attribute is must-cache for reads and
must- cache for writes.

The majority of data sets in a installation should be may-cache in order to
have a best utilized and self tuned cache.

Some data sets on a cached volume such as VTOC, VTOC Index, and VVDS
are always must-cache.

Note that the MSR and BIAS values you specify in the storage class (SC) can
be used to determine how buffers are to be allocated when system-managed
buffering is used for VSAM applications. Please refer to XXX to get more
information on system management buffering.

An I/O operation towards a may-cache data set maybe or maybe not cached,
depending on the analysis of the controller global cache statistics and a data
set cache usage.

B.1.6.2 Dynamic Cache Management Enhanced (DCME)
DCME is a function in the controller able to produce cache information in a
system and in a data set basis. SMS uses data from DCME in order to adjust
the use of the cache for may-cache data sets. With DCME, SMS
distinguishes between good (cache-friendly) and poor cache (cache
unfriendly) candidate data sets when deciding which I/Os to which data sets
should be cached.

DCME produces two key measurements:

• Data set cache behavior:

DCME maintains information about the hit ratios achieved by I/Os to each
may-cache data set. DCME continuously updates this information so that
it can make decisions on which I/Os to which data sets should be cached,
based on the most recent I/O activity.

When considering whether or not to cache I/Os to a data set, two
controller resources must be accounted for: the cache and the NVS. A
data set might very well be a good user of the cache and a poor user of
the NVS. SMS, therefore, maintains two criteria: one general (for all I/Os)
and one specific for writes.

Two data set related indicators are calculated:

- Overall Hit Ratio: Reads Hits + Writes Hits / Cacheable IOs

Used to decide to cache a Read request.
238 VSAM Demystified

- Write Hit Ratio: Write Hits / Write IOs

Used to decide to cache a Write request.

A hit is perceived by a disconnect time less that 0.5 ms.

These indicators are weighed averages of previous values to avoid
sudden changes.

• Subsystem load (here the word subsystem means DASD controller)

The DCME in controller produces global data about the cache usage.

A Subsystem Threshold (ST) indicator is timely calculated by SMS from the
global DCME data. Higher the ST more cache contention. These statistics
are periodically collected by SMS. The time is controlled by DINTERVAL at
IGDSMSxx Parmlib (default 150 seconds).

ST reflects the DASD cache performance and is composed by the figures of
Read Hit Ratios and DFW bypass for all the cached volumes in the DASD
subsystem.

The DFW bypass occurs when a DFW hit request requires NVS, but this
storage is not available, due to contention. In this case, the I/O request
bypass the NVS and is executed directly from the volatile cache to the disks.

Also, based on the statistics, SMS maintains two global average indicators:

• Cache Control Indicator (CCI), the percent of may-cache I/O requests
allowed to use cache.

• NVS Control Indicator (NVSCI), the percent of may-cache DFW I/O
requests allowed to use NVS.

These values used for such caculation can be displayed on D SMS,CACHE,
an MVS command:
Appendix B. Miscellaneous performance items 239

D SMS,CACHE output

Following is the legend:

• Ssid = Subsystem Iientifier

• Devs = Number of managed devices attached to subsystem

• Read = Percent of data on managed devices eligible for caching

• Write= Percent of data on managed devices eligible for DFW

• Hit Ratio = Percent of reads with cache hits

• Fw Bypasses = Number of fast write bypasses due to NVS overload

An I/O operation for a may-cache data set has three states:

• Normal, the data set I/O is allowed to use the cache through the Define
Extent CCW

• Inhibit, the data set I/O does not use the cache that is, the Inhibit Cache
Load bit is set on the Define Extent first CCW of a Read channel program,
in order to inhibit the staging of the cache. In the case of a Write channel
program, the Inhibit DFW bit is set on the Define Extent first CCW of a
Write channel program, to inhibit DFW, and consequently the staging of
NVS

• Force, the data set I/O is cached so that the indicators can be evaluated

The logic is the following:

IGD002I 18:09:11 DISPLAY SMS 276
SSID DEVS READ WRITE HIT RATIO FW BYPASSES
00FF 5 N/A N/A 97% 0
8900 8 N/A N/A 98% 0
8902 5 N/A N/A 98% 0
8904 4 N/A N/A 99% 0
8903 7 N/A N/A 99% 0
8901 4 N/A N/A 98% 0
000A 8 N/A N/A 99% 0
3000 21 N/A N/A 99% 0
8905 6 N/A N/A 97% 0
6004 8 N/A N/A 90% 0
0028 4 N/A N/A 98% 24
00FD 7 N/A N/A 98% 0
00FC 4 N/A N/A 99% 0
00FE 1 N/A N/A 98% 0
240 VSAM Demystified

• After open for the first 100 IOs and the first 100 Writes the IOs are forced

• The data set indicator is compared with Subsystem Threshold. If does not
exceed, the data set IOs are going to be inhibited for the next 5000 IOs. If
exceeds, the data set IOs are going to be normal for a certain amount of
time, where the comparison is going to be done again.

So, if the ST indicator is going up, the exclusion from cache for may-cache
data sets is gradual, no sudden and dramatic changes in the DASD
subsystem performance are caused.

As a DCME by-product DFSM I/O statistics (I/O rates, I/O response time, I/O
service time components, caching statistics for reads and writes) are
collected in new SMF records in data set and storage class basis.

B.1.6.3 Never-cache candidates data sets
There are some data sets that are not good candidates for DASD caching,
such as:

• Data sets that are processed track-by-track, as the input to the Dump
function of DFDSS itself. However, in this case the installation does not
need to care about this, because DFDSS uses the adequate option (Inhibit
Cache Load) in the Define Extent command.

• Data sets which have a very poor direct revisit pattern

• ASM paging data sets

B.2 Cache analogy

For sequential access, it is important to say that, cache does not save data CI
disks I/O operations. The cache only tries to match the speed of the disks and
channels. Consequently, using the faster resource less.

To make the previous sentence crystal clear take a look in the Figure 29 on
page 242 and read the following analogy. Out of the parenthesis is an human
story, in the parenthesis the analgous one for data processing.

Once upon a time, there was in a valley (system), a city (application
program), named Piracicaba. This city (application program) needs in
average per day, one trillion (million) 3-atoms H2O molecules (300-bytes I/O
records) to consume (process). The H2O molecules (I/O records) are taken
(read) sequently from a Lake (ESS disk) located in the high mountain (ESS
controller). There is a pipe (I/O subsystem) composed of many tubes
(channel, SAP and CPU IOS processing) to do that.
Appendix B. Miscellaneous performance items 241

However, the flow (disk I/O rate) from the lake (disk) usually was short for the
city (application program) average demand (demand). However, because this
demand fluctuates along the day (application program run) due to the human
daily tasks (CPU busy status and application program logic), the civil
engineers (ESS engineers) decided to build a dam (cache) to relieve the
problem. It is key to note that the existence of the dam (cache) does not vary
the amount of H2O molecules (I/O records) that the lake (disk) can provide
per day. The advantage of the dam (cache) is that when the city (application
program) demand decreases the lake (disks) fill in advance (look ahead) the
dam (cache), without a shortage (cache miss) in the city (application
program) later on.

Figure 29. The tale

(Disk)

(Cache)

(Channel)

(Application)

(VSAM BP)

The tale of a City and a Sequential Read
242 VSAM Demystified

Now, here are a few questions to see if you are still awake:

• What happens if the instantaneous demand in the city (application
program) is always bigger the instantaneous lake flow (disk I/O rate)?

Answer: The dam (cache) becomes empty and it is worthless. The total
flow (I/O records per second) is determined by the slower stage, that is the
lake (disk).

• What happens if it rains too much in the lake (the ESS controller is low
utilized and there is no contention at all in the disks) and the lake flow
(disk I/O rate) becomes higher than the city (application) demand?

Answer: The dam (cache) becomes full. Here, the fate of the city and the
application diverge. The city suffers a flood. The application does not
suffer a flood (S390 is not an Unix server in Denying of Service status) but
the cache is worthless again.The total flow (I/O records per second) is
determined by the slower stage, that is the application. We are loosing
disk I/O capacity, by spinning wheels (in this case, loosing revolutions).

• Then, how come to build a dam (cache) can improve the efficiency and
how can you improve this efficiency of the dam (cache)?

Answer: As we saw, if the city (application) or the lake (ESS disk) always
has the higher flow, the dam is worthless, does not importing the size of
the dam (cache). Repeating, the advantage of the dam (cache) is that
when the city (application program) demand decreases the lake (disks) fill
in advance (look ahead) the dam (cache), without a shortage (cache miss)
in the city (application program) later on.

Making the dam (cache) bigger is a solution, to exploit better the
fluctuations in the demand in both sides. However, steel and cement
(circuits) have a price, do not exaggerate. In our story was created a
project to increase the dam (cache) capacity. Guess what? The engineers
disagree in the optimum size and they split in two teams:

- High mountain engineers (ESS engineers), which defend to increase
the current status, that is the natural lake (non-volatile disks) plus the
dam (cache)

- Low mountain engineers (VSAM engineers), which defend to build an
artificial lake (volatile MVS/VSAM virtual storage) used as a second
dam (VSAM buffer). Here the first dam (cache) and the second dam
(VSAM buffer) are still connected by pipes (channels).

This was the final design and the final of the story. The second dam
(VSAM buffer) is used has an extension of the first dam (cache) trying to
balance overflows caused by variations in the demand or in the intake. It is
important to note that the H2O molecule (I/O record) is moved and not
Appendix B. Miscellaneous performance items 243

copied. Then, when the H2O molecule (I/O record) arrives in the city
(application) there are no copies of it already in the first dam (cache), or in
second dam (VSAM buffer).

Maybe a good name for this story is: The Tale of One City (almost by
Dickens) or the Adventures of a Sequential Read (by us).

Random reads and random writes have a completely different stories.

B.3 Share options analogy

Refer to Figure 30, to follow this explanation:

Figure 30. Sharing VSAM data sets

Once upon a time, there were two lands (MVS A and MVS B) separated by
a river. All the culture accumulated by the people living there was stored in
two shared VSAM data sets strategically located in the middle of the
separating river. In each land, there were two sets of people, the

Updater

Updater

Updater Updater

VSAM

Global
GRS Updater

Updater

Local
ENQ

Updater

Updater

Reader

Updater

MVS A MVS B

(23)

(33)

VSAM

Local
ENQ
244 VSAM Demystified

round-head and the square-head (pay attention that each set live on both
sides of the river). Each head shaped people used their own data set
(black data set for the square and white data set for the round head). The
data sets were accessed by students, the readers (for read) and by the
professors, the updaters (for writes).

The square-heads (from the both lands) care about write integrity and not
about read integrity, so they choose shareoptions (2 3) for their data set
and they use GRS adequately for their purpose.

The round-heads (from the both lands) cared about write and read
integrity. They decided to implement that through GRS/ENQ mechanism
only. The shareoptions of the round-head data set is (3 3).

The picture is showing what finally happened:

- In the square-head story, we may see, updaters being held by the
VSAM gate in both sides of the river. This was caused by cross region
2 in shareoptions. Only one updater succeeds in passing the gate (in
each side). All other open for output fail with a return code in ACB.
However, the reader in MVS A was not blocked by VSAM gate (no read
integrity).

To guarantee write integrity between updaters from the two lands a
global GRS/ENQ is implemented guaranteeing that a second updater
(from MVS B in the picture) which arrived last be held at the GRS gate.

- About the round-head story, there are not VSAM gates for the
round-heads because cross region option 3. In both sides they
implement a local ENQ gate to guarantee read and write integrity. That
is, only one updater or several readers from each MVS are allowed to
the round-head data set.

However, they did not read the GRS Primer book. The ENQ name is
not made global to GRS and then two updaters (each from each land)
are allowed to update concurrently the round-head data set, then
blowing up the integrity.

B.4 Symptoms (messages) from a broken data set

The most common messages associated with broken data sets events are:

• IDC3302I ACTION ERROR ON dsname

Explanation: An error was detected while attempting to access the data
set. See the associated message in the program listing for explanation.

• IDC3308I ** DUPLICATE RECORD xxx
Appendix B. Miscellaneous performance items 245

Explanation: The output data set of a Repro command already contains a
record with the same key or record number. In the message text:

xxx For an indexed data set, the first five bytes of the duplicate key, in
hexadecimal format. For a relative record data set, the relative record
number (in decimal) of the duplicate record.

System Action: The system does not write the record. The system
continues processing with the next record, unless this is a copy catalog
and a duplicate record is encountered or there has been a total of four
errors.The system ends in either case. For example, if a duplicate record
is encountered while Repro is copying a catalog, the system ends
processing.

If the record in the input file with the duplicated key is to repalced the one
in the data set, you should specify the replace option. If not check your
Repro input.

• IDC3314I RECORD xxx OUT OF SEQUENCE

Explanation: The key of the record to be written is less than or equal to
the key of the last record written. In the message text:

xxx The first five bytes in hexadecimal format of the key of the record
that is out of sequence.

System Action: If the output data set is a virtual storage access method
(VSAM) data set, the system ends processing of the command after four
errors.

Application Programmer Response: Rearrange the records to be written
so that they are in ascending key sequence. The record can be written to
the data set using skip sequential processing. Run the job again and the
output data set will be opened for skip sequential processing (because
data already exists in the data set) and records that were out of sequence
will be written.

• IDC3351I ** VSAM {OPEN|CLOSE|I/O} RETURN CODE IS return-code

{RPLFDBWD=nnnnnnnn}

Explanation: An error was encountered during VSAM open, close, or
action request processing, as indicated in the text of the message:

nnnnnnnn The meaning can be found in DFSMS/MVS Macro Instructions
for Data Sets.

rc The return code, as follows:

- For a CLOSE errors, we present only the return codes associated with
broken data set situation:
246 VSAM Demystified

128 Index search horizontal chain pointer loop encountered.

136 Not enough virtual storage was available in the program's
address space for a work area for CLOSE.

184 An uncorrectable I/O error occurred while VSAM was
completing outstanding I/O requests.

246 The compression management services (CMS) close function
failed.

- For an OPEN errors, we present only the return codes associated with
broken data set situation:

76 Attention message: The interrupt recognition flag (IRF) was
detected for a data set opened for input processing

This indicates that DELETE processing was interrupted. Th

structure of the data set is unpredictable; the access

method services DIAGNOSE command may be used to check the

data set for structural errors.

88 A previous extend error has occurred during EOV processing of
the data set.

96 Attention message: an unusable data set was opened for input.

104 Attention message: the time stamp of the volume on which a data
set is stored doesn't match the system time stamp in the volume record
in the catalog; this indicates that extent information in the catalog
recordmay not agreewith theextents indicated in thevolume's VTOC.

108 Attention message: the time stamps of a data component and an
index component do not match; this indicates that either the data or the
index has been updated separately from the other. Check for possible
duplicate VVRs.

116 Attention message: the data set was not properly closed or was
not opened. If the data set was not properly closed, then data may be
lost if processing continues. Use the access method services VERIFY
command to attempt to close the data set properly. In a cross-system
shared DASD environment, a return code of 116 can have two
meanings:

The data set was not properly closed.

The data set is opened for output on another processor.

Note: If you use the VERIFY command, this message can appear
again when VERIFY processing opens the data set. If VERIFY
Appendix B. Miscellaneous performance items 247

processing then successfully closes the data set, VERIFY processing
issues condition code 0 at the end of its processing. In addition, an
empty cluster cannot be verified.

132 One of the following errors occurred:

Not enough storage was available for work areas.

The format-1 DSCB or the catalog cluster record is incorrect.

136 Not enough virtual-storage space is available in the program's
address space for work areas, control blocks, or buffers.

140 The catalog indicates this data set has an incorrect physical
record size.

160 The operands specified in the ACB or GENCB macro are
inconsistent with each other or with the information in the catalog
record. This error can also occur when the VSAM cluster being opened
is empty.

164 An uncorrectable I/O error occurred while VSAM was reading the
volume label.

168 The data set is not available for the type of processing specified,
or an attempt was made to open a reusable data set with the reset
option while another user had the data set open.

184 An uncorrectable I/O error occurred while VSAM was completing
an I/O request.

190 An incorrect high-allocated RBA was found in the catalog entry for
this data set. The catalog entry is bad and will have to be restored.

192 An unusable data set was opened for output.

193 The interrupt recognition flag (IRF) was detected for a data set
opened for output processing.

194 Direct access of a compressed data component is not allowed.

200 Volume is unusable.

212 The ACB MACRF specification is GSR or LSR and the data set
requires create processing.

232 Reset (ACB MACRF=RST) was specified for a nonreusable data
set and the data set is not empty.

240 Format-4 DSCB and catalog time stamp verification failed during
volume mount processing for output processing.
248 VSAM Demystified

- For a Logical I/O Error

4 End of data set encountered (during sequential retrieval), or the
search argument is greater than the high key of the data set. Either no
EODAD routine is provided, or one is provided and it returned to VSAM
and the processing program issued another GET.

8 You attempted to store a record with a duplicate key, or there is a
duplicate recordfor analternate indexwith theuniquekeyoption.

12 You attempted to store a record out of ascending key sequence in
skip-sequential mode; record had a duplicate key; for skip-sequential
processing, your GET, PUT, and POINT requests are not referencing
records in ascending sequence; or, for skip-sequential retrieval, the key
requested is lower than the previous key requested. For shared
resources, buffer pool is full.

16 Record not found.

20 Record already held in exclusive control by another requester.

28 Data set cannot be extended because VSAM cannot allocate
additional direct-access storage space. Either there is not enough
space left to make the secondary allocation request, you attempted to
increase the size of a data set while processing with SHROPT=4 and
DISP=SHR, or the index CI is not large enough to hold the entire CA.
This error could also be due to a data set trying to extend beyond 4GB
on a system that does not support extended addressability.

32 An RBA specified that does not give the address of any data
record in the data set.

40 Insufficient virtual storage in the user's address space to complete
the request.

116 During initial data set loading (that is, when records are being
stored in the data set the first time it's opened), GET, POINT, ERASE,
direct PUT, and skip-sequential PUT with OPTCD=UPD are not
allowed. During initial data set loading, VERIFY is not allowed except
for an entry-sequenced data set (ESDS) defined with the RECOVERY
option. For initial loading of a relative record data set, the request was
other than a PUT insert.

128 A loop exists in the index horizontal pointer chain during index
search processing.

144 Incorrect pointer (no associated base record) in an alternate
index.
Appendix B. Miscellaneous performance items 249

156 An addressed GET UPD request failed because the control
interval flag was on, or an incorrect control interval was detected during
keyed processing. In the latter case, the control interval is incorrect for
one of the following reasons:

• A key is not greater than the previous key.

• A key is not in the current control interval.

• A spanned record RDF is present.

• A free space pointer is incorrect.

• ThenumberofrecordsdoesnotmatchagroupRDFrecordcount.

• A record definition field is incorrect.

• An index CI format is incorrect.

212 Unable to split index; increase index CI size.

236 Validity check error for SHAREOPTIONS 3 or 4.

245 A severe error was detected by the compression management
services (CMS) during compression processing.

246 A severe error was detected by the compression management
services (CMS) during decompression processing.

250 A valid dictionary token does not exist for the compressed data
set. The data record cannot be decompressed.

254 I/O activity on the data set was not quiesced before the data set
was closed.

• IDC3350I synad[SYNAD]message[from VSAM]

Explanation: An I/O error occurred for a VSAM data set. The message
text, format, and explanation of VSAM I/O errors are provided in
DFSMS/MVS Macro Instructions for Data Sets.

• IEC070I rc[(sfi)]- ccc,jjj,sss,ddname, dev,ser,xxx,dsname,cat

Explanation: An error occurred during EOV (end-of-volume) processing for a
VSAM data set. In the message text:

rc Reason code. This field indicates the reason for the error. The reason
codes, their meanings, and the corresponding system action and required
responses are listed under message IEC161I.

sfi Subfunction information (error information returned by another
subsystem or component). This field appears only for certain return codes,
and its format is shown with those codes to which it applies.
250 VSAM Demystified

ccc Problem Determination (PDF) Function code. The PDF code is for use
by IBM if further problem determination is required. If thePDF code has
meaning for the user, it will be documented with the corresponding Reason
Code (rc).

IEC070I RC32 , RC202 , RC8 , RC18 , RC24 , RC104 , RC203 MSGIEA000I
IOS000I CMD REJ, COMMAND REJECT

ADR970E HSM MISSING CI within SEQUENCE SET TRACK TRACKS
TRK TRKS TRKS=0 TRACKS=0 EXTENT

B.5 IDCAMS Examine messages

The most frequent error messages issued by Examine command are:

IDC01714I ERROR LOCATED at OFFSET xxx

IDC01720I INDEX CONTROL INTERVAL DISPLAY at RBA xxx FOLLOWS

IDC11703I DUPLICATE KEYS in INDEX

IDC11704I INDEX KEYS are NOT in SEQUENCE

IDC11705I INDEX RECORD CONTAINS DUPLICATE INDEX POINTERS

IDC11707I DUPLICATE INDEX POINTERS FOUND in SEQUENCE SET

IDC11711I INDEX CONTROL INTERVAL COUNT ERROR

IDC11715I INDEX HIGH-USED RBA is NOT a MULTIPLE of CI SIZE
IDC11724I DATA COMPONENT CA NOT KNOWN to SEQUENCE SET
IDC11725I SEQUENCE SET RBA INCONSISTENT with VSAM-
MAINTAINED RBA

IDC11727I INDEX HIGH-USED RBA GREATER THAN HIGH-ALLOCATED

IDC11728I DATA FOUND in EMPTY CI

IDC11733I DATA COMPONENT KEY SEQUENCE ERROR MSGIDC11758I
SOFTWARE EOF FOUND in INDEX CI

IDC11763I RBA of INDEX CI GREATER THAN HIGH-USED RBA IDC11771I
INVALID RBA GENERATED

IDC11772I HORIZONTAL POINTER CHAIN LOOP
Appendix B. Miscellaneous performance items 251

252 VSAM Demystified

Appendix C. Special notices

This publication is intended to provide users of VSAM data sets with the
information required to understand, evaluate, and use VSAM properly. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by OS/390 or the DFSMS product.
See the PUBLICATIONS section of the IBM Programming Announcement for
OS/390 2.10 for more information about what publications are considered to
be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
© Copyright IBM Corp. 2001 253

attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

e (logo)®
IBM ®
Hiperbatch
Hiperspace
MQSeries
MVS
RACF
S/390
VTAM
WebSphere
XT

Redbooks
Redbooks Logo
IMS
Language Environment
Lotus
MQ
OS/390
Parallel Sysplex
QMF
RMF
SP
254 VSAM Demystified

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix C. Special notices 255

256 VSAM Demystified

Appendix D. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 IBM Redbooks

For information on ordering these publications see “How to get IBM
Redbooks” on page 259.

• Enhanced Catalog Sharing and Management, SG24-5594

• Integrated Catalog Facility Backup and Recovery, SG24-5644

4.7 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates and formats.

D.2 Other resources

These publications are also relevant as further information sources:

• OS/390 MVS JCL Reference, GC28-1757

• OS/390 MVS JCL User’s Guide, GC28-1758

• DFSMS/MVS Managing Catalogs, SC26-4914

• DFSMS/MVS Using Data Sets, SC26-4922

• DFSMS/MVS DFSMSdfp Storage Administration Reference, SC26-4920

CD-ROM Title Collection Kit
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection SK2T-8038
IBM Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
IBM AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2001 257

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

• OS/390 Security Server (RACF) Command Language Reference,
SC28-1919

• DFSMS/MVS Access Method Services for the Integrated Catalog Facility,
SC26-4906

• DFSMS/MVS Macro Instructions for Data Sets, SC26-4913

D.3 Referenced Web sites

These Web sites are also relevant as further information sources:

• http://knowledge.storage.ibm.com Storage information
258 VSAM Demystified

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2001 259

mailto: pubscan@us.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com/

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
260 VSAM Demystified

Index

A
access method services 27
alternate index 10

B
backup-while-open 130
base cluster 62
batch local shared resources 81
BLDVRP macro 71
broken index 154
buffer pools 107
buffers 58
BUFND 61
BUFNI 61
BUFSP 61

C
cache 113
cache candidates 241
cache modes 229
cache usage attributes 236
catalog 152, 158

recovery 158
catalog management 2
catalog search interface 138, 193
catalogs 91
CICS 195
CLOSE macro 201
cluster 8
commands

AMS DEFINE PATH 11
BLDINDEX 11
DIAGNOSE 134, 147, 149
EXAMINE 134, 149
EXPORT 128
IDCAMS DEFINE 13
IMPORT 129
LISTCAT 166, 176
PRINT 174
REPRO 141
VERIFY 135, 143, 145

component 6
compression dictionaries 84
control area 4

splits 4
© Copyright IBM Corp. 2001
control block update facility 192
control interval 3, 48
control interval definition field 3

D
data buffers 65
data component 6
data compression 84
data decompression 88
data set recovery 127
data striping 92

CA size 102
implementing 95
JCL 96
multi-layering 94
recommendations 103

data-in-virtual 17
DB2 195
defer write requests 75
DFSMShsm 195
DFSMSrmm 197
direct access 14
DITTO 29
dynamic cache management enhanced 238

E
end-of-volume macro 202
entry sequenced data set 11
extended addressability 19

macros 21
extended format data set 18, 22

F
free space 183
FREESPACE 35

G
generic compression 87
generic key 13
global shared resources 75

H
HARBA 172
HFS 29
hierarchical file system 195
261

high used RBA 47
hiperbatch 107
hiperspace 74, 78
history 24
HURBA 171

I
IDCAMS 28, 33
IDCAMS LISTCAT 145
IEFUSI exit 56
II08859 APAR 128
IMBED 36
index component 6
index options 52

REPLICATE 52
index set 7
indexed sequential access method 1
initial load 140
initial load mode 54, 67
integrity 184

J
Java 197

K
keys 9
knowledge database 128

L
lab environment 223

cache concepts 226
linear data set 16
local shared resources 71
logical record 2
LSR buffering 73

M
massages

IDC3302I 138
media manager 200
messages

ARC0909E 183
IDC11709I 142
IDC11712I 142
IDC11727I 142
IDC3009I 138, 159
IDC3308I 138, 140

IDC3314I 138
IDC33351I 49, 55
IDC3350 138
IDC3350I 142
IDC3351I 22, 138, 139, 141, 142, 144, 145,
147, 150, 153
IEC070I 138
IEC161I 140
IOS000 138
IOS000I 144

N
non-shared resource 68
non-shared resources 62, 64

O
online transaction program 72
OPEN macro 201
OY40882 APAR 195

P
parameters

ACB 59
AMP 78
buffer allocation 59
BUFFERSPACE 60
BUFND 61
BUFNI 61
BUFSP 60
FREESPACE 50
MACRF 60
performance 42
RECOVERY 67
SHAREOPTIONS 53
SMB services 77
SPEED 67
STRNO 69
SYSTEM 80

partial release 46
path 11
Performance

hiperspace 74
performance

BSLR 81
buffer allocation 62
buffer location 76
buffering options 58
262 VSAM Demystified

buffers 65
BUFFERSPACE parameter 48
catalog search interface 194
CI size 48
compression 90
connect time 117
constraint Relief 47
data buffers 66
data compression 84
data striping 92, 102
disconnect time 113
global shared resources 75
guaranteed space 43
I/O response time 62
index buffers 69
index component buffers 67
index I/O buffer 66
IOS queue time 111
KSDS 69
lab environment 224
management 39, 40
NSR buffering 70
optimizing CA size 45
parameters 42
pending time 112
REGION 56, 57
response time 119
rule-of-thumb 41
service level agreement 37
SMB 77
transaction 38

physical record 2
processing

direct 12
direct access 13
KSDS 13
relative record 15
sequential 12
sequential access 13

R
RACF 107
record definition field 3
record management 2
recovery

scenarios 154
task abend 157
VVDS records 158

recovery termination manager 61
relative byte address 5
relative record data set 14
reorganization 183
resource pool 58
resource recovery management services 179
resource recovery services 204
RMF 103
RMODE31 76

S
sample code 209

extract data from SMF 64 record 214
JRIO APIs 209
VSAM shared information 213

sequence set 6
SHAREOPTIONS 36, 65
sharing

control block update facility 192
cross-region 188
cross-system 189
global resource sharing 192
intra-address space 185
options 188, 191

SmartBatch 121
SMF 91, 138, 174
SMS managed 67
space constraint relief 131
spanned records 5
sphere 10
splits 4, 110, 181

FREESPACE parameter 50
system managed buffering 77
system-managed data sets 34

T
tailored compression 86
transactional VSAM 202

batch applications 208
environment 203
sharing control data sets 205
SMSVSAM 205
system logger 206

V
variable relative record 16
VSAM 24
263

buffering 120
catalog management 2
cluster 8, 10
component 6
compression 89
control interval 3
data set organization 110
data set recovery 127
defining 33
entry sequenced data set 11
exploiters 195
extended addressability 19
extended format 18
history 1
initial load mode 54
integrity 53
keyed sequenced data set 13
linear data set 16
managing data sets 181
non-shared resource 68
non-shared resources 62
organizations 25
parameters 34
performance 37
performance management 103
record management 2
recovery 141, 143, 145, 147, 149, 152
relative record data set 14
sharing 150
sharing data sets 183
SMB 77
structural damage 147
VRRDS 16

VTOC 92

W
wasted space 181
264 VSAM Demystified

© Copyright IBM Corp. 2001 265

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at ibm.com/redbooks
• Fax this form to: USA International Access Code + 1 845 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-6105-00
VSAM Demystified

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

(0.5” spine)
0.475”<->0.875”

250 <-> 459 pages

VSAM
 Dem

ystified

®

SG24-6105-00 ISBN 0738418110

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

VSAM Demystified

Understand VSAM
architecture

Manage VSAM data

Improve VSAM
performance

Virtual Storage Access Method (VSAM) is one of the access
methods used to process data. We all have used VSAM and
may work with VSAM data sets daily, but exactly how it works
and why we use it instead of another access method may
seem to be a mystery.

This IBM Redbook will give you the information required to
understand, evaluate, and use VSAM properly. It will clarify
VSAM functions for application programmers who will be
working with VSAM. The practical, straightforward approach
should dispel much of the complexity sometimes associated
with VSAM. Wherever possible an example is used to
reinforce a description of a VSAM function.

This redbook is intended as a supplement to existing product
manuals. It is intended to be used as an initial point of
reference for VSAM functions. For example, parameters used
in data set allocation to improve performance are described,
and code examples provided, but the actual manual,
DFSMS/MVS Access Method Services for the Integrated
Catalog Facility, SC26-4906, must be consulted for complete
syntax rules.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. VSAM basics
	1.1 VSAM overview
	1.2 What is VSAM?
	1.3 VSAM terminology
	1.3.1 Logical record
	1.3.2 Physical record
	1.3.3 Control interval
	1.3.4 Control area
	1.3.5 Splits
	1.3.6 Spanned records
	1.3.7 Relative byte address
	1.3.8 Component
	1.3.9 Cluster
	1.3.10 Keys
	1.3.11 Sphere
	1.3.12 Alternate indexes
	1.3.13 Alternate index paths

	1.4 Data set types
	1.4.1 Entry sequenced data set (ESDS)
	1.4.2 Keyed sequenced data set (KSDS)
	1.4.3 Relative record data set (RRDS)
	1.4.4 Variable relative record data set (VRRDS)
	1.4.5 Linear data set (LDS)

	1.5 Extended format data set
	1.6 Extended addressability (EA)
	1.7 Comparing VSAM data set organizations
	1.8 A brief history of VSAM
	1.9 Choosing a VSAM data set type
	1.10 Accessing VSAM data
	1.10.1 IDCAMS
	1.10.2 Accessing HFS files through VSAM
	1.10.3 DITTO/ESA

	1.11 Defining VSAM data sets
	1.11.1 Using IDCAMS
	1.11.2 System-managed data sets
	1.11.3 Parameters of interest

	Chapter 2. Performance
	2.1 Service level agreement (SLA)
	2.2 Transaction performance
	2.3 Performance management
	2.3.1 I/O performance

	2.4 VSAM performance management
	2.5 VSAM rule-of-thumb (ROT) mode
	2.5.1 Invalid rules-of-thumb (IROTs)

	2.6 Parameters affecting performance
	2.6.1 Allocation units
	2.6.2 Buffer space
	2.6.3 Control interval size
	2.6.4 Free space
	2.6.5 Index options
	2.6.6 Share options
	2.6.7 Initial load option
	2.6.8 Region size
	2.6.9 Buffering options
	2.6.10 Data compression
	2.6.11 Data striping

	2.7 VSAM performance management
	2.7.1 Performance scenario using RMF reports
	2.7.2 Reduce the number of I/Os
	2.7.3 I/O wait time (IOSQ) for VSAM files
	2.7.4 I/O wait time (PEND) for VSAM files
	2.7.5 I/O service time (disconnect) for VSAM files
	2.7.6 I/O service time (connect) for VSAM files
	2.7.7 How to decrease VSAM CPU time

	2.8 VSAM and SmartBatch
	2.8.1 SmartBatch highlights
	2.8.2 SmartBatch components and VSAM

	Chapter 3. Recovery of VSAM data sets
	3.1 Basic recommendations
	3.2 VSAM recovery information sources
	3.3 How to back up VSAM data sets
	3.3.1 IDCAMS EXPORT and IMPORT
	3.3.2 Backup-while-open concepts

	3.4 Space Constraint Relief parameter (fewer X‘037’ abends)
	3.5 IDCAMS recovery commands
	3.5.1 EXAMINE command
	3.5.2 DIAGNOSE command
	3.5.3 VERIFY command

	3.6 Useful documents
	3.7 Broken data sets
	3.7.1 Lack of virtual storage
	3.7.2 Initial loading problems
	3.7.3 Mismatch between catalog and data set
	3.7.4 Hardware errors
	3.7.5 Bad data or bad channel program
	3.7.6 Structural damage
	3.7.7 Improper sharing
	3.7.8 Mismatch between catalog and VTOC
	3.7.9 VSAM does not produce expected output
	3.7.10 Recovery scenarios
	3.7.11 Recovering ICF catalogs
	3.7.12 Recovering damaged VVDS entries

	3.8 IDC3009I message
	3.9 IDCAMS LISTCAT output fields
	3.9.1 High used RBA value (HURBA) for KSDS
	3.9.2 High allocated RBA value (HARBA)
	3.9.3 FREESPC
	3.9.4 High key RBA/CI
	3.9.5 High-level index RBA value
	3.9.6 Sequence set first RBA value
	3.9.7 Number of index levels
	3.9.8 Time stamps

	3.10 DFSMSdss PRINT command
	3.11 SMF record types related to VSAM data sets
	3.11.1 SMF record type 60
	3.11.2 SMF record type 61
	3.11.3 SMF record type 62
	3.11.4 SMF record type 63
	3.11.5 SMF record type 64

	3.12 Resource Recovery Management Services (RRMS) and VSAM

	Chapter 4. Managing your VSAM data sets
	4.1 Reorganization considerations
	4.1.1 CI/CA splits
	4.1.2 The loss of useful space in data CA
	4.1.3 CI/CA splits causing free space increase

	4.2 Sharing VSAM data sets
	4.2.1 Write and read integrity
	4.2.2 Who is sharing the data set?
	4.2.3 Intra-address space sharing
	4.2.4 Cross-region options
	4.2.5 Cross-system options
	4.2.6 General share options — considerations
	4.2.7 Control Block Update Facility (CBUF)

	4.3 Catalog Search Interface
	4.3.1 CSI setup

	4.4 VSAM exploiters
	4.4.1 DB2
	4.4.2 Hierarchical File System (HFS)
	4.4.3 CICS
	4.4.4 DFSMShsm
	4.4.5 DFSMSrmm
	4.4.6 OS/390 data sets
	4.4.7 Java/VSAM

	4.5 Media Manager, Open, Close, EOV in VSAM
	4.5.1 OPEN macro
	4.5.2 CLOSE macro
	4.5.3 End-of-Volume (EOV) macro

	4.6 Transactional VSAM

	Appendix A. Sample code
	A.1 JRIO API examples
	A.1.1 Locate a record by key in keyed access record file
	A.1.2 Position to a record in a random access record file
	A.1.3 Read a record from a keyed access record file
	A.1.4 Read a record from a random access record file
	A.1.5 Update a record in a keyed access record file

	A.2 Accessing the VSAM Shared Information (VSI)
	A.3 Sample program to extract information from SMF record type 64

	Appendix B. Miscellaneous performance items
	B.1 Our laboratory
	B.1.1 General lab description
	B.1.2 What do we measure?
	B.1.3 DASD cache concepts
	B.1.4 Cache Modes
	B.1.5 Using cache modes in a non-SMS data set
	B.1.6 Using cache in an SMS data set

	B.2 Cache analogy
	B.3 Share options analogy
	B.4 Symptoms (messages) from a broken data set
	B.5 IDCAMS Examine messages

	Appendix C. Special notices
	Appendix D. Related publications
	D.1 IBM Redbooks
	4.7 IBM Redbooks collections
	D.2 Other resources
	D.3 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Index
	IBM Redbooks review

